Détail de l'indexation
Ouvrages de la bibliothèque en indexation 004.89 (4)
Ajouter le résultat dans votre panier Faire une suggestion Affiner la rechercheArtificial intelligence and internet of things for renewable energy systems / Neeraj Priyadarshi (2022)
Titre : Artificial intelligence and internet of things for renewable energy systems Type de document : document électronique Auteurs : Neeraj Priyadarshi, Auteur ; Sanjeevikumar Padmanaban, Auteur ; Kamal-Kant Hiran, Auteur ; Jens Bo Holm-Nielsen, Auteur Editeur : Berlin : De Gruyter Année de publication : 2022 Collection : Frontiers in Computational Intelligence num. Vol. 12 Importance : 1 fichier PDF Présentation : ill. ISBN/ISSN/EAN : 978-3-11-071404-3 Note générale : Mode d'accès : accès au texte intégral par :
- authentification après inscription à la plateforme EBSCOhost
ou
- adresse IP de l'École.
Bibliogr. .- IndexLangues : Anglais (eng) Mots-clés : Artificial intelligence Index. décimale : 004.89 Systèmes d'application d'intelligence artificielle. Systèmes basés sur la connaissance intelligente. Résumé : This book explains the application of Artificial Intelligence and Internet of Things on green energy systems. The design of smart grids and intelligent networks enhances energy efficiency, while the collection of environmental data through sensors and their prediction through machine learning models improve the reliability of green energy systems. Note de contenu : Summary :
1. Artificial intelligence and internet of things for renewable energy systems
2. Power control of modified type III DFIG-based wind turbine system using four-mode type I fuzzy logic controller
3. An IoT-based approach for efficient home automation
4. Design and implementation of IoT-enabled smart single-phase energy meter monitoring system
5. Internet of things (IoT)-based smart grids
...Artificial intelligence and internet of things for renewable energy systems [document électronique] / Neeraj Priyadarshi, Auteur ; Sanjeevikumar Padmanaban, Auteur ; Kamal-Kant Hiran, Auteur ; Jens Bo Holm-Nielsen, Auteur . - Berlin : De Gruyter, 2022 . - 1 fichier PDF : ill.. - (Frontiers in Computational Intelligence; Vol. 12) .
ISBN : 978-3-11-071404-3
Mode d'accès : accès au texte intégral par :
- authentification après inscription à la plateforme EBSCOhost
ou
- adresse IP de l'École.
Bibliogr. .- Index
Langues : Anglais (eng)
Mots-clés : Artificial intelligence Index. décimale : 004.89 Systèmes d'application d'intelligence artificielle. Systèmes basés sur la connaissance intelligente. Résumé : This book explains the application of Artificial Intelligence and Internet of Things on green energy systems. The design of smart grids and intelligent networks enhances energy efficiency, while the collection of environmental data through sensors and their prediction through machine learning models improve the reliability of green energy systems. Note de contenu : Summary :
1. Artificial intelligence and internet of things for renewable energy systems
2. Power control of modified type III DFIG-based wind turbine system using four-mode type I fuzzy logic controller
3. An IoT-based approach for efficient home automation
4. Design and implementation of IoT-enabled smart single-phase energy meter monitoring system
5. Internet of things (IoT)-based smart grids
...Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Etat_Exemplaire E00377 004.89 ART Ressources électroniques Bibliothèque Centrale Energie Disponible Téléchargeable Artificial intelligence-based smart power systems (2023)
Titre : Artificial intelligence-based smart power systems Type de document : texte imprimé Auteurs : Sanjeevikumar Padmanaban, Éditeur scientifique ; Sivaraman Palanisamy, Éditeur scientifique ; Sharmeela Chenniappan, Éditeur scientifique ; Jens Bo Holm-Nielsen, Éditeur scientifique Editeur : Piscataway, NJ : IEEE Press Année de publication : 2023 Autre Editeur : Hoboken, NJ : Wiley Importance : XXII, 378 p. Présentation : ill. Format : 26 cm ISBN/ISSN/EAN : 978-1-119-89396-7 Note générale : Ref. Bibliogr. en fin de chapitres. - Index Langues : Anglais (eng) Mots-clés : Smart power grids
Artificial intelligence
Réseaux électriques intelligents
Intelligence artificielleIndex. décimale : 004.89 Systèmes d'application d'intelligence artificielle. Systèmes basés sur la connaissance intelligente. Résumé : Authoritative resource describing artificial intelligence and advanced technologies in smart power systems with simulation examples and case studies
Artificial Intelligence-based Smart Power Systems presents advanced technologies used in various aspects of smart power systems, especially grid-connected and industrial evolution. It covers many new topics such as distribution phasor measurement units, blockchain technologies for smart power systems, the application of deep learning and reinforced learning, and artificial intelligence techniques. The text also explores the potential consequences of artificial intelligence and advanced technologies in smart power systems in the forthcoming years.
To enhance and reinforce learning, the editors include many learning resources throughout the text, including MATLAB, practical examples, and case studies.Note de contenu : Summary :
1. Introduction to Smart Power Systems
2. Modeling and Analysis of Smart Power System
3. Multilevel Cascaded Boost Converter Fed Multilevel Inverter for Renewable Energy Applications
4. Recent Advancements in Power Electronics for Modern Power Systems-Comprehensive Review on DC-Link Capacitors Concerning Power Density Maximization in Power Converters
5. Energy Storage Systems for Smart Power Systems
6. Real-Time Implementation and Performance Analysis of Supercapacitor for Energy Storage
7. Adaptive Fuzzy Logic Controller for MPPT Control in PMSG Wind Turbine Generator
8. A Novel Nearest Neighbor Searching-Based Fault Distance Location Method for HVDC Transmission Lines
9. Comparative Analysis of Machine Learning Approaches in Enhancing Power System Stability
10. Augmentation of PV-Wind Hybrid Technology with Adroit Neural Network, ANFIS, and PI Controllers Indeed Precocious DVR System
11. Deep Reinforcement Learning and Energy Price Prediction
12. Power Quality Conditioners in Smart Power System
13. The Role of Internet of Things in Smart Homes
14. Electric Vehicles and IoT in Smart Cities
15. Modeling and Simulation of Smart Power Systems Using HIL
16. Distribution Phasor Measurement Units (PMUs) in Smart Power Systems
17. Blockchain Technologies for Smart Power Systems
18. Power and Energy Management in Smart Power SystemsArtificial intelligence-based smart power systems [texte imprimé] / Sanjeevikumar Padmanaban, Éditeur scientifique ; Sivaraman Palanisamy, Éditeur scientifique ; Sharmeela Chenniappan, Éditeur scientifique ; Jens Bo Holm-Nielsen, Éditeur scientifique . - Piscataway, NJ : IEEE Press : Hoboken, NJ : Wiley, 2023 . - XXII, 378 p. : ill. ; 26 cm.
ISBN : 978-1-119-89396-7
Ref. Bibliogr. en fin de chapitres. - Index
Langues : Anglais (eng)
Mots-clés : Smart power grids
Artificial intelligence
Réseaux électriques intelligents
Intelligence artificielleIndex. décimale : 004.89 Systèmes d'application d'intelligence artificielle. Systèmes basés sur la connaissance intelligente. Résumé : Authoritative resource describing artificial intelligence and advanced technologies in smart power systems with simulation examples and case studies
Artificial Intelligence-based Smart Power Systems presents advanced technologies used in various aspects of smart power systems, especially grid-connected and industrial evolution. It covers many new topics such as distribution phasor measurement units, blockchain technologies for smart power systems, the application of deep learning and reinforced learning, and artificial intelligence techniques. The text also explores the potential consequences of artificial intelligence and advanced technologies in smart power systems in the forthcoming years.
To enhance and reinforce learning, the editors include many learning resources throughout the text, including MATLAB, practical examples, and case studies.Note de contenu : Summary :
1. Introduction to Smart Power Systems
2. Modeling and Analysis of Smart Power System
3. Multilevel Cascaded Boost Converter Fed Multilevel Inverter for Renewable Energy Applications
4. Recent Advancements in Power Electronics for Modern Power Systems-Comprehensive Review on DC-Link Capacitors Concerning Power Density Maximization in Power Converters
5. Energy Storage Systems for Smart Power Systems
6. Real-Time Implementation and Performance Analysis of Supercapacitor for Energy Storage
7. Adaptive Fuzzy Logic Controller for MPPT Control in PMSG Wind Turbine Generator
8. A Novel Nearest Neighbor Searching-Based Fault Distance Location Method for HVDC Transmission Lines
9. Comparative Analysis of Machine Learning Approaches in Enhancing Power System Stability
10. Augmentation of PV-Wind Hybrid Technology with Adroit Neural Network, ANFIS, and PI Controllers Indeed Precocious DVR System
11. Deep Reinforcement Learning and Energy Price Prediction
12. Power Quality Conditioners in Smart Power System
13. The Role of Internet of Things in Smart Homes
14. Electric Vehicles and IoT in Smart Cities
15. Modeling and Simulation of Smart Power Systems Using HIL
16. Distribution Phasor Measurement Units (PMUs) in Smart Power Systems
17. Blockchain Technologies for Smart Power Systems
18. Power and Energy Management in Smart Power SystemsRéservation
Réserver ce document
Exemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité Etat_Exemplaire 061222 004.89 ART Papier Bibliothèque Centrale Data sciences_Intelligence artificielle Disponible En bon état 061223 004.89 ART Papier Bibliothèque Centrale Data sciences_Intelligence artificielle Disponible Consultation sur place
Titre : Machine learning applications in civil engineering Type de document : document électronique Auteurs : Kundan Meshram, Auteur Editeur : Amsterdam : Elsevier Année de publication : 2024 Collection : Woodhead publishing series in civil and structural engineering Importance : 1 fichier PDF Présentation : ill. ISBN/ISSN/EAN : 978-0-443-15363-1 Note générale : Mode d'accès : accès au texte intégral par :
- authentification après inscription à la plateforme EBSCOhost
ou
- adresse IP de l'École.
Bibliogr..- IndexLangues : Anglais (eng) Mots-clés : Civil engineering
Machine learningIndex. décimale : 004.89 Systèmes d'application d'intelligence artificielle. Systèmes basés sur la connaissance intelligente. Résumé : Machine Learning Applications in Civil Engineering discusses machine learning and deep learning models for different civil engineering applications. These models work for stochastic methods wherein internal processing is done using randomized prototypes. The book explains various machine learning model designs that will assist researchers to design multi domain systems with maximum efficiency. It introduces Machine Learning and its applications to different Civil Engineering tasks, including Basic Machine Learning Models for data pre-processing, models for data representation, classification models for Civil Engineering Applications, Bioinspired Computing models for Civil Engineering, and their case studies. Using this book, civil engineering students and researchers can deep dive into Machine Learning, and identify various solutions to practical Civil Engineering tasks. - Introduces various ML models for Civil Engineering Applications that will assist readers in their analysis of design and development interfaces for building these applications - Reviews different lacunas and challenges in current models used for Civil Engineering scenarios - Explores designs for customized components for optimum system deployment - Explains various machine learning model designs that will assist researchers to design multi domain systems with maximum efficiency Note de contenu : Summary :
1. Introduction to machine learning for civil engineering
2. Basic machine learning for data pre-processing
3. Use of machine learning models for data representation
4. Introduction to classification models for civil engineering applications
5. Classification models for practical deployment in different civil engineering applications
...
Machine learning applications in civil engineering [document électronique] / Kundan Meshram, Auteur . - Amsterdam : Elsevier, 2024 . - 1 fichier PDF : ill.. - (Woodhead publishing series in civil and structural engineering) .
ISBN : 978-0-443-15363-1
Mode d'accès : accès au texte intégral par :
- authentification après inscription à la plateforme EBSCOhost
ou
- adresse IP de l'École.
Bibliogr..- Index
Langues : Anglais (eng)
Mots-clés : Civil engineering
Machine learningIndex. décimale : 004.89 Systèmes d'application d'intelligence artificielle. Systèmes basés sur la connaissance intelligente. Résumé : Machine Learning Applications in Civil Engineering discusses machine learning and deep learning models for different civil engineering applications. These models work for stochastic methods wherein internal processing is done using randomized prototypes. The book explains various machine learning model designs that will assist researchers to design multi domain systems with maximum efficiency. It introduces Machine Learning and its applications to different Civil Engineering tasks, including Basic Machine Learning Models for data pre-processing, models for data representation, classification models for Civil Engineering Applications, Bioinspired Computing models for Civil Engineering, and their case studies. Using this book, civil engineering students and researchers can deep dive into Machine Learning, and identify various solutions to practical Civil Engineering tasks. - Introduces various ML models for Civil Engineering Applications that will assist readers in their analysis of design and development interfaces for building these applications - Reviews different lacunas and challenges in current models used for Civil Engineering scenarios - Explores designs for customized components for optimum system deployment - Explains various machine learning model designs that will assist researchers to design multi domain systems with maximum efficiency Note de contenu : Summary :
1. Introduction to machine learning for civil engineering
2. Basic machine learning for data pre-processing
3. Use of machine learning models for data representation
4. Introduction to classification models for civil engineering applications
5. Classification models for practical deployment in different civil engineering applications
...
Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Etat_Exemplaire E00367 004.89 MES Ressources électroniques Bibliothèque Centrale Génie Civil Disponible Téléchargeable
Titre : Machine learning on geographical data using Python : introduction into geodata with applications and use cases Type de document : texte imprimé Auteurs : Joos Korstanje, Auteur Editeur : New York : Apress Année de publication : 2023 Importance : XV, 312 p. Présentation : ill. Format : 25 cm ISBN/ISSN/EAN : 978-1-4842-8286-1 Note générale : Index Langues : Anglais (eng) Mots-clés : Geodatabases
Machine learning
Python (Computer program language)Index. décimale : 004.89 Systèmes d'application d'intelligence artificielle. Systèmes basés sur la connaissance intelligente. Résumé : Get up and running with the basics of geographic information systems (GIS), geospatial analysis, and machine learning on spatial data in Python.
This book starts with an introduction to geodata and covers topics such as GIS and common tools, standard formats of geographical data, and an overview of Python tools for geodata. Specifics and difficulties one may encounter when using geographical data are discussed: from coordinate systems and map projections to different geodata formats and types such as points, lines, polygons, and rasters. Analytics operations typically applied to geodata are explained such as clipping, intersecting, buffering, merging, dissolving, and erasing, with implementations in Python. Use cases and examples are included. The book also focuses on applying more advanced machine learning approaches to geographical data and presents interpolation, classification, regression, and clustering via examples and use cases.
This book is your go-to resource for machine learning on geodata. It presents the basics of working with spatial data and advanced applications. Examples are presented using code (accessible at github.com/Apress/machine-learning-geographic-data-python) and facilitate learning by application.Note de contenu : Summary :
Part I: General introduction
Chapter 1: Introduction to Geodata
Chapter 2: Coordinate Systems and Projections
Chapter 3: Geodata Data Types
Chapter 4: Creating Maps
Part II: GIS operations
Chapter 5: Clipping and Intersecting
Chapter 6: Buffering
Chapter 7: Merge and Dissolve
Chapter 8: Erase
Part III: Machine Learning and mathematics
Chapter 9: Interpolation
Chapter 10: Classification
Chapter 11: Regression
Chapter 12: Clustering
Chapter 13: ConclusionMachine learning on geographical data using Python : introduction into geodata with applications and use cases [texte imprimé] / Joos Korstanje, Auteur . - New York : Apress, 2023 . - XV, 312 p. : ill. ; 25 cm.
ISBN : 978-1-4842-8286-1
Index
Langues : Anglais (eng)
Mots-clés : Geodatabases
Machine learning
Python (Computer program language)Index. décimale : 004.89 Systèmes d'application d'intelligence artificielle. Systèmes basés sur la connaissance intelligente. Résumé : Get up and running with the basics of geographic information systems (GIS), geospatial analysis, and machine learning on spatial data in Python.
This book starts with an introduction to geodata and covers topics such as GIS and common tools, standard formats of geographical data, and an overview of Python tools for geodata. Specifics and difficulties one may encounter when using geographical data are discussed: from coordinate systems and map projections to different geodata formats and types such as points, lines, polygons, and rasters. Analytics operations typically applied to geodata are explained such as clipping, intersecting, buffering, merging, dissolving, and erasing, with implementations in Python. Use cases and examples are included. The book also focuses on applying more advanced machine learning approaches to geographical data and presents interpolation, classification, regression, and clustering via examples and use cases.
This book is your go-to resource for machine learning on geodata. It presents the basics of working with spatial data and advanced applications. Examples are presented using code (accessible at github.com/Apress/machine-learning-geographic-data-python) and facilitate learning by application.Note de contenu : Summary :
Part I: General introduction
Chapter 1: Introduction to Geodata
Chapter 2: Coordinate Systems and Projections
Chapter 3: Geodata Data Types
Chapter 4: Creating Maps
Part II: GIS operations
Chapter 5: Clipping and Intersecting
Chapter 6: Buffering
Chapter 7: Merge and Dissolve
Chapter 8: Erase
Part III: Machine Learning and mathematics
Chapter 9: Interpolation
Chapter 10: Classification
Chapter 11: Regression
Chapter 12: Clustering
Chapter 13: ConclusionRéservation
Réserver ce document
Exemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité Etat_Exemplaire 061339 004.89 KOR Papier Bibliothèque Centrale Data sciences_Intelligence artificielle Disponible Consultation sur place 061340 004.89 KOR Papier Bibliothèque Centrale Data sciences_Intelligence artificielle Disponible Consultation sur place
004 Informatique. Science et technologie de l'informatique

