Titre : |
R 4 data science quick reference : a pocket guide to APIs, libraries, and packages |
Type de document : |
texte imprimé |
Auteurs : |
Thomas Mailund, Auteur |
Mention d'édition : |
Second edition |
Editeur : |
New York : Apress |
Année de publication : |
2022 |
Importance : |
IX, 232 p. |
Présentation : |
ill. |
Format : |
25 cm |
ISBN/ISSN/EAN : |
978-1-4842-8779-8 |
Note générale : |
Index |
Langues : |
Anglais (eng) |
Mots-clés : |
R (Computer program language)
Statistics -- Data processing
R (Langage de programmation)
Statistique -- Informatique |
Index. décimale : |
004.43 Langage de programmation |
Résumé : |
In this handy, quick reference book you'll be introduced to several R data science packages, with examples of how to use each of them. All concepts will be covered concisely, with many illustrative examples using the following APIs: readr, dibble, forecasts, lubridate, stringr, tidyr, magnittr, dplyr, purrr, ggplot2, modelr, and more. With R 4 Data Science Quick Reference, you'll have the code, APIs, and insights to write data science-based applications in the R programming language. You'll also be able to carry out data analysis. All source code used in the book is freely available on GitHub. |
Note de contenu : |
Summary :
1. Introduction
2. Importing Data: readr
3. Representing Tables: tibble
4. Tidy+select
5. Reformatting Tables: tidyr
6. Pipelines: magrittr
7. Functional Programming: purrr
8. Manipulating Data Frames: dplyr
9. Working with Strings: stringr
10. Working with Factors: forcats
11. Working with Dates: lubridate
12. Working with Models: broom and modelr
13. Plotting: ggplot2
14. Conclusions |
R 4 data science quick reference : a pocket guide to APIs, libraries, and packages [texte imprimé] / Thomas Mailund, Auteur . - Second edition . - New York : Apress, 2022 . - IX, 232 p. : ill. ; 25 cm. ISBN : 978-1-4842-8779-8 Index Langues : Anglais ( eng)
Mots-clés : |
R (Computer program language)
Statistics -- Data processing
R (Langage de programmation)
Statistique -- Informatique |
Index. décimale : |
004.43 Langage de programmation |
Résumé : |
In this handy, quick reference book you'll be introduced to several R data science packages, with examples of how to use each of them. All concepts will be covered concisely, with many illustrative examples using the following APIs: readr, dibble, forecasts, lubridate, stringr, tidyr, magnittr, dplyr, purrr, ggplot2, modelr, and more. With R 4 Data Science Quick Reference, you'll have the code, APIs, and insights to write data science-based applications in the R programming language. You'll also be able to carry out data analysis. All source code used in the book is freely available on GitHub. |
Note de contenu : |
Summary :
1. Introduction
2. Importing Data: readr
3. Representing Tables: tibble
4. Tidy+select
5. Reformatting Tables: tidyr
6. Pipelines: magrittr
7. Functional Programming: purrr
8. Manipulating Data Frames: dplyr
9. Working with Strings: stringr
10. Working with Factors: forcats
11. Working with Dates: lubridate
12. Working with Models: broom and modelr
13. Plotting: ggplot2
14. Conclusions |
|  |