Détail de l'indexation
Ouvrages de la bibliothèque en indexation 004.8 (24)



Titre : Apprentissage artificiel : deep learning, concepts et algorithmes Type de document : texte imprimé Auteurs : Antoine Cornuéjols, Auteur ; Laurent Miclet, Auteur ; Vincent Barra, Auteur Mention d'édition : 3ème éd Editeur : Paris : Eyrolles Année de publication : 2018 Collection : Algorithmes Importance : X, 899 p. Présentation : ill. Format : 23 cm ISBN/ISSN/EAN : 978-2-212-67522-1 Note générale : Bibliogr. p. [851]-889. - Index Langues : Français (fre) Mots-clés : Apprentissage automatique
Intelligence artificielle
AlgorithmesIndex. décimale : 004.8 Intelligence artificielle Résumé :
Ce livre présente les concepts qui sous-tendent l'apprentissage artificiel, les algorithmes qui en découlent et certaines de leurs applications. Son objectif est de décrire un ensemble d'algorithmes utiles en tentant d'établir un cadre théorique pour l'ensemble des techniques regroupées sous ce terme "d'apprentissage artificiel". La troisième édition de ce livre a été complètement réorganisée pour s'adapter aux évolutions très significatives de l'apprentissage artificiel ces dernières années. Une large place y est accordée aux techniques d'apprentissage profond et à de nouvelles applications, incluant le traitement de flux de données.Note de contenu : Au sommaire :
1. Des machines apprenantes !
2. L'induction exploitant la structure de l'espace des hypothèses.
3. L'induction par optimisation d'un critère inductif.
4. L'induction par comparaison à des exemples (et par collaboration).
5. L'apprentissage descriptif.
6. Apprentissage en environnement non stationnaire.
7. Aspects pratiques et suppléments.
8. Annexes techniquesApprentissage artificiel : deep learning, concepts et algorithmes [texte imprimé] / Antoine Cornuéjols, Auteur ; Laurent Miclet, Auteur ; Vincent Barra, Auteur . - 3ème éd . - Paris : Eyrolles, 2018 . - X, 899 p. : ill. ; 23 cm. - (Algorithmes) .
ISBN : 978-2-212-67522-1
Bibliogr. p. [851]-889. - Index
Langues : Français (fre)
Mots-clés : Apprentissage automatique
Intelligence artificielle
AlgorithmesIndex. décimale : 004.8 Intelligence artificielle Résumé :
Ce livre présente les concepts qui sous-tendent l'apprentissage artificiel, les algorithmes qui en découlent et certaines de leurs applications. Son objectif est de décrire un ensemble d'algorithmes utiles en tentant d'établir un cadre théorique pour l'ensemble des techniques regroupées sous ce terme "d'apprentissage artificiel". La troisième édition de ce livre a été complètement réorganisée pour s'adapter aux évolutions très significatives de l'apprentissage artificiel ces dernières années. Une large place y est accordée aux techniques d'apprentissage profond et à de nouvelles applications, incluant le traitement de flux de données.Note de contenu : Au sommaire :
1. Des machines apprenantes !
2. L'induction exploitant la structure de l'espace des hypothèses.
3. L'induction par optimisation d'un critère inductif.
4. L'induction par comparaison à des exemples (et par collaboration).
5. L'apprentissage descriptif.
6. Apprentissage en environnement non stationnaire.
7. Aspects pratiques et suppléments.
8. Annexes techniquesRéservation
Réserver ce document
Exemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité Etat_Exemplaire 058001 004.8 COR Papier Bibliothèque Centrale Informatique Disponible Consultation sur place 058000 004.8 COR Papier Bibliothèque Centrale Informatique Disponible En bon état Artificial intelligence and quantum computing for advanced wireless networks / Savo G. Glisic (2022)
Titre : Artificial intelligence and quantum computing for advanced wireless networks Type de document : texte imprimé Auteurs : Savo G. Glisic, Auteur ; Beatriz Lorenzo, Auteur Editeur : New York : John Wiley and Sons Année de publication : 2022 Importance : XIII, 850 p. Présentation : ill. Format : 27 cm ISBN/ISSN/EAN : 978-1-119-79029-7 Note générale : Références bibliogr. en fin de chapitres. - Index Langues : Anglais (eng) Mots-clés : Artificial intelligence
Quantum computing
Wireless communication systems
Intelligence artificielle
Informatique quantique
Transmission sans filIndex. décimale : 004.8 Intelligence artificielle Résumé : "By increasing the density and number of different functionalities in wireless networks there is more and more need for the use of artificial intelligence for planning network deployment, running their optimization and dynamically controlling their operation. For example, machine learning algorithms are used for the prediction of traffic and network state in order to timely reserve resources for smooth communication with high reliability and low latency; Big data mining is used to predict customer behaviour and pre-distribute the information content across the network so that it can be efficiently delivered as soon as requested; Intelligent agents can search the internet on behalf of the customer in order to find the best options when it comes to buying any product online. This timely book presents a review of AI-based learning algorithms with a number of case studies supported by Python and R programs, providing a discussion of the learning algorithms used in decision making based on game theory and a number of specific applications in wireless networks, such as channel, network state and traffic prediction. It is expected that once quantum computing becomes a commercial reality, it will be used in wireless communications systems in order to speed up specific processes due to its inherent parallelization capabilities. This is a practical book packed with case studies and follows a basic through to advanced level path and is an ideal course accompaniment for graduate/masters students, and online professional study." Note de contenu : Summary :
Part I Artificial Intelligence
1. Introduction
2. Machine Learning Algorithms
3. Artificial Neural Networks
4. Explainable Neural Networks
5. Graph Neural Networks
6. Learning Equilibria and Games
7. AI Algorithms in Networks
Part II Quantum Computing
8. Fundamentals of Quantum Communications
9. Quantum Channel Information Theory
10. Quantum Error Correction
11. Quantum Search Algorithms
12. Quantum Machine Learning
13. QC Optimization
14. Quantum Decision Theory
15. Quantum Computing in Wireless Networks
16. Quantum Network on Graph
17. Quantum InternetArtificial intelligence and quantum computing for advanced wireless networks [texte imprimé] / Savo G. Glisic, Auteur ; Beatriz Lorenzo, Auteur . - New York : John Wiley and Sons, 2022 . - XIII, 850 p. : ill. ; 27 cm.
ISBN : 978-1-119-79029-7
Références bibliogr. en fin de chapitres. - Index
Langues : Anglais (eng)
Mots-clés : Artificial intelligence
Quantum computing
Wireless communication systems
Intelligence artificielle
Informatique quantique
Transmission sans filIndex. décimale : 004.8 Intelligence artificielle Résumé : "By increasing the density and number of different functionalities in wireless networks there is more and more need for the use of artificial intelligence for planning network deployment, running their optimization and dynamically controlling their operation. For example, machine learning algorithms are used for the prediction of traffic and network state in order to timely reserve resources for smooth communication with high reliability and low latency; Big data mining is used to predict customer behaviour and pre-distribute the information content across the network so that it can be efficiently delivered as soon as requested; Intelligent agents can search the internet on behalf of the customer in order to find the best options when it comes to buying any product online. This timely book presents a review of AI-based learning algorithms with a number of case studies supported by Python and R programs, providing a discussion of the learning algorithms used in decision making based on game theory and a number of specific applications in wireless networks, such as channel, network state and traffic prediction. It is expected that once quantum computing becomes a commercial reality, it will be used in wireless communications systems in order to speed up specific processes due to its inherent parallelization capabilities. This is a practical book packed with case studies and follows a basic through to advanced level path and is an ideal course accompaniment for graduate/masters students, and online professional study." Note de contenu : Summary :
Part I Artificial Intelligence
1. Introduction
2. Machine Learning Algorithms
3. Artificial Neural Networks
4. Explainable Neural Networks
5. Graph Neural Networks
6. Learning Equilibria and Games
7. AI Algorithms in Networks
Part II Quantum Computing
8. Fundamentals of Quantum Communications
9. Quantum Channel Information Theory
10. Quantum Error Correction
11. Quantum Search Algorithms
12. Quantum Machine Learning
13. QC Optimization
14. Quantum Decision Theory
15. Quantum Computing in Wireless Networks
16. Quantum Network on Graph
17. Quantum InternetRéservation
Réserver ce document
Exemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité Etat_Exemplaire 061218 004.8 GLI Papier Bibliothèque Centrale Informatique Disponible Consultation sur place 061219 004.8 GLI Papier Bibliothèque Centrale Informatique Disponible Consultation sur place
Titre : Artificial intelligence by example : acquire advanced AI, machine learning, and deep learning design skills Type de document : texte imprimé Auteurs : Denis Rothman, Auteur Mention d'édition : 2nd ed Editeur : Birmingham : Packt Publishing Année de publication : 2020 Importance : XXI, 549 p. Présentation : ill. Format : 24 cm ISBN/ISSN/EAN : 978-1-83921-153-9 Langues : Anglais (eng) Mots-clés : Artificial intelligence
Machine learningIndex. décimale : 004.8 Intelligence artificielle Résumé : This book will make you an adaptive thinker and help you apply concepts to real-world scenarios. Using some of the most interesting AI examples, right from computer programs such as a simple chess engine to cognitive chatbots, you will learn how to tackle the machine you are competing with. You will study some of the most advanced machine learning models, understand how to apply AI to blockchain and Internet of Things (IoT), and develop emotional quotient in chatbots using neural networks such as recurrent neural networks (RNNs) and convolutional neural networks (CNNs).
This edition also has new examples for hybrid neural networks, combining reinforcement learning (RL) and deep learning (DL), chained algorithms, combining unsupervised learning with decision trees, random forests, combining DL and genetic algorithms, conversational user interfaces (CUI) for chatbots, neuromorphic computing, and quantum computing.
By the end of this book, you will understand the fundamentals of AI and have worked through a number of examples that will help you develop your AI solutions.Note de contenu : Summary :
1. Getting started with next-generation artificial intelligence through reinforcement learning.
2. Building a reward matrix designing your datasets.
3. Machine intelligence evaluation functions and numerical convergence.
4. Optimizing your solutions with k-means clustering.
5. How to use decision trees to enhance k-means clustering.
6. Innovating ai with google translate.
7. Optimizing blockchains with naive bayes.
8. Solving the xor problem with a fnn.
9. Abstract image classification with cnn.
10. Conceptual representation learning.
11. Combining rl and dl.
12. Ai and the iot.
13. Visualizing networks with tensorflow 2.x and tensorboard.
14. Preparing the input of chatbots with rbms and pca.
15. Setting up a cognitive nlp ui/cui chatbot
16. Improving the emotional intelligence. deficiencies of chatbots.
17. Genetic algorithms in hybrid neural networks.
18. Neuromorphic computing.
19. Quantum computingArtificial intelligence by example : acquire advanced AI, machine learning, and deep learning design skills [texte imprimé] / Denis Rothman, Auteur . - 2nd ed . - Birmingham : Packt Publishing, 2020 . - XXI, 549 p. : ill. ; 24 cm.
ISBN : 978-1-83921-153-9
Langues : Anglais (eng)
Mots-clés : Artificial intelligence
Machine learningIndex. décimale : 004.8 Intelligence artificielle Résumé : This book will make you an adaptive thinker and help you apply concepts to real-world scenarios. Using some of the most interesting AI examples, right from computer programs such as a simple chess engine to cognitive chatbots, you will learn how to tackle the machine you are competing with. You will study some of the most advanced machine learning models, understand how to apply AI to blockchain and Internet of Things (IoT), and develop emotional quotient in chatbots using neural networks such as recurrent neural networks (RNNs) and convolutional neural networks (CNNs).
This edition also has new examples for hybrid neural networks, combining reinforcement learning (RL) and deep learning (DL), chained algorithms, combining unsupervised learning with decision trees, random forests, combining DL and genetic algorithms, conversational user interfaces (CUI) for chatbots, neuromorphic computing, and quantum computing.
By the end of this book, you will understand the fundamentals of AI and have worked through a number of examples that will help you develop your AI solutions.Note de contenu : Summary :
1. Getting started with next-generation artificial intelligence through reinforcement learning.
2. Building a reward matrix designing your datasets.
3. Machine intelligence evaluation functions and numerical convergence.
4. Optimizing your solutions with k-means clustering.
5. How to use decision trees to enhance k-means clustering.
6. Innovating ai with google translate.
7. Optimizing blockchains with naive bayes.
8. Solving the xor problem with a fnn.
9. Abstract image classification with cnn.
10. Conceptual representation learning.
11. Combining rl and dl.
12. Ai and the iot.
13. Visualizing networks with tensorflow 2.x and tensorboard.
14. Preparing the input of chatbots with rbms and pca.
15. Setting up a cognitive nlp ui/cui chatbot
16. Improving the emotional intelligence. deficiencies of chatbots.
17. Genetic algorithms in hybrid neural networks.
18. Neuromorphic computing.
19. Quantum computingRéservation
Réserver ce document
Exemplaires (4)
Code-barres Cote Support Localisation Section Disponibilité Etat_Exemplaire 059071 004.8 ROT Papier Bibliothèque Centrale Informatique Disponible Consultation sur place 059074 004.8 ROT Papier Bibliothèque Centrale Informatique Disponible En bon état 059072 004.8 ROT Papier Bibliothèque Centrale Informatique Disponible En bon état 059073 004.8 ROT Papier Bibliothèque Centrale Informatique Disponible En bon état
Titre : Computational intelligence : synergies of fuzzy logic, neural networks, and evolutionary computing Type de document : texte imprimé Auteurs : Nazmul Siddique, Auteur ; Hojjat Adeli, Auteur Editeur : New York : John Wiley & Sons Année de publication : 2013 Importance : XVII, 512 p. Présentation : ill. Format : 25 cm. ISBN/ISSN/EAN : 978-1-118-33784-4 Note générale : Annexe. - Index Langues : Anglais (eng) Mots-clés : Computational intelligence
Computers -- Enterprise
Applications -- Business Intelligence Tools
Computers -- Intelligence (AI) & SemanticsIndex. décimale : 004.8 Intelligence artificielle Résumé : This book presents an introduction to some of the cutting edge technological paradigms under the umbrella of computational intelligence. Computational intelligence schemes are investigated with the development of a suitable framework for fuzzy logic, neural networks and evolutionary computing, neuro-fuzzy systems, evolutionary-fuzzy systems and evolutionary neural systems. Applications to linear and non-linear systems are discussed with examples. Note de contenu : Summary :
1. Introduction to computational intelligence
2. Introduction to fuzzy logic
3. Fuzzy systems and applications
4. Neural networks
5. Neural systems and applications
...Computational intelligence : synergies of fuzzy logic, neural networks, and evolutionary computing [texte imprimé] / Nazmul Siddique, Auteur ; Hojjat Adeli, Auteur . - New York : John Wiley & Sons, 2013 . - XVII, 512 p. : ill. ; 25 cm.
ISBN : 978-1-118-33784-4
Annexe. - Index
Langues : Anglais (eng)
Mots-clés : Computational intelligence
Computers -- Enterprise
Applications -- Business Intelligence Tools
Computers -- Intelligence (AI) & SemanticsIndex. décimale : 004.8 Intelligence artificielle Résumé : This book presents an introduction to some of the cutting edge technological paradigms under the umbrella of computational intelligence. Computational intelligence schemes are investigated with the development of a suitable framework for fuzzy logic, neural networks and evolutionary computing, neuro-fuzzy systems, evolutionary-fuzzy systems and evolutionary neural systems. Applications to linear and non-linear systems are discussed with examples. Note de contenu : Summary :
1. Introduction to computational intelligence
2. Introduction to fuzzy logic
3. Fuzzy systems and applications
4. Neural networks
5. Neural systems and applications
...Réservation
Réserver ce document
Exemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité Etat_Exemplaire 055779 004.8 SID Papier Bibliothèque Centrale Informatique Disponible Consultation sur place Convergence (2022)
Titre : Convergence : artificial intelligence and quantum computing Type de document : texte imprimé Auteurs : Greg Viggiano, Éditeur scientifique ; David Brin (1950-....), Préfacier, etc. Editeur : Hoboken, NJ : Wiley Année de publication : 2022 Importance : XLVIII, 272 p. Présentation : ill. Format : 23 cm ISBN/ISSN/EAN : 978-1-394-17410-2 Note générale : La couverture indique en plus "Social, economic, and policy impacts". - Notes bibliogr. p. 251-258. - Index Langues : Anglais (eng) Mots-clés : Artificial intelligence -- Social aspects
Quantum computing -- Social aspects
Artificial intelligence -- Economic aspects
Quantum computing -- Economic aspects
Intelligence artificielle -- Aspect social
Informatique quantique -- Aspect social
Intelligence artificielle -- Aspect économique
Informatique quantique -- Aspect économiqueIndex. décimale : 004.8 Intelligence artificielle Résumé : "Prepare for the coming convergence of AI and quantum computing. A collection of essays from 20 renowned, international authors working in industry, academia, and government, Convergence: Artificial Intelligence and Quantum Computing explains the impending convergence of artificial intelligence and quantum computing. A diversity of viewpoints is presented, each offering their view of this coming watershed event. In the book, you'll discover that we're on the cusp of seeing the stuff of science fiction become reality, with huge implications for ripping up the existing social fabric, global economy, and current geopolitical order. Along with an incisive foreword by Hugo- and Nebula-award winning author David Brin, you'll also find: Explorations of the increasing pace of technological development; Explanations of why seemingly unusual and surprising breakthroughs might be just around the corner; Maps to navigate the potential minefields that await us as AI and quantum computing come together A fascinating and thought-provoking compilation of insights from some of the leading technological voices in the world, Convergence convincingly argues that we should prepare for a world in which very little will remain the same and shows us how to get ready."-- Provided by publisher. Note de contenu : Summary :
Part I. Policy and Regulatory Impacts
Part II. Economic Impacts
Part III. Social ImpactsConvergence : artificial intelligence and quantum computing [texte imprimé] / Greg Viggiano, Éditeur scientifique ; David Brin (1950-....), Préfacier, etc. . - Hoboken, NJ : Wiley, 2022 . - XLVIII, 272 p. : ill. ; 23 cm.
ISBN : 978-1-394-17410-2
La couverture indique en plus "Social, economic, and policy impacts". - Notes bibliogr. p. 251-258. - Index
Langues : Anglais (eng)
Mots-clés : Artificial intelligence -- Social aspects
Quantum computing -- Social aspects
Artificial intelligence -- Economic aspects
Quantum computing -- Economic aspects
Intelligence artificielle -- Aspect social
Informatique quantique -- Aspect social
Intelligence artificielle -- Aspect économique
Informatique quantique -- Aspect économiqueIndex. décimale : 004.8 Intelligence artificielle Résumé : "Prepare for the coming convergence of AI and quantum computing. A collection of essays from 20 renowned, international authors working in industry, academia, and government, Convergence: Artificial Intelligence and Quantum Computing explains the impending convergence of artificial intelligence and quantum computing. A diversity of viewpoints is presented, each offering their view of this coming watershed event. In the book, you'll discover that we're on the cusp of seeing the stuff of science fiction become reality, with huge implications for ripping up the existing social fabric, global economy, and current geopolitical order. Along with an incisive foreword by Hugo- and Nebula-award winning author David Brin, you'll also find: Explorations of the increasing pace of technological development; Explanations of why seemingly unusual and surprising breakthroughs might be just around the corner; Maps to navigate the potential minefields that await us as AI and quantum computing come together A fascinating and thought-provoking compilation of insights from some of the leading technological voices in the world, Convergence convincingly argues that we should prepare for a world in which very little will remain the same and shows us how to get ready."-- Provided by publisher. Note de contenu : Summary :
Part I. Policy and Regulatory Impacts
Part II. Economic Impacts
Part III. Social ImpactsRéservation
Réserver ce document
Exemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité Etat_Exemplaire 061246 004.8 CON Papier Bibliothèque Centrale Data sciences_Intelligence artificielle Disponible En bon état 061247 004.8 CON Papier Bibliothèque Centrale Data sciences_Intelligence artificielle Disponible Consultation sur place PermalinkPermalinkPermalinkPermalinkPermalinkPermalinkPermalinkPermalinkPermalinkPermalink