Titre : |
Theory et application of infinite series |
Type de document : |
texte imprimé |
Auteurs : |
Konrad Knopp, Auteur ; R.C.H. Young, Traducteur |
Editeur : |
Darien [Etats unis] : Hafner Publishing Corporation |
Année de publication : |
1971 |
Importance : |
XII, 556 p. |
Format : |
23 cm |
Note générale : |
Bibliogr. p. 556. -Index |
Langues : |
Anglais (eng) Langues originales : Allemand (ger) |
Mots-clés : |
Séries infinies |
Index. décimale : |
517.52 Suites et séries |
Note de contenu : |
Summary :
I. Real numbers the theory of ral numbers.
1. Pincipales of the theory of real numbers.
2. Sequences of real numbers.
II. Foundations of the theory of infinite series.
3. Series of positive terms.
4. Series of arbitrary terms.
5. Power series.
6. The expansions of the so-called elementary functions.
7. Infinite products.
8. Closed and numerical expressions for the sums of series.
III. Development of the theory.
9. Series of positive terms.
10. Series of arbitrary terms.
11. Series of variable terms.
12. Series of complex terms.
13. Divergent series.
14. Euler's summation formula and asymptotic expansions. |
Theory et application of infinite series [texte imprimé] / Konrad Knopp, Auteur ; R.C.H. Young, Traducteur . - Darien [Etats unis] : Hafner Publishing Corporation, 1971 . - XII, 556 p. ; 23 cm. Bibliogr. p. 556. -Index Langues : Anglais ( eng) Langues originales : Allemand ( ger)
Mots-clés : |
Séries infinies |
Index. décimale : |
517.52 Suites et séries |
Note de contenu : |
Summary :
I. Real numbers the theory of ral numbers.
1. Pincipales of the theory of real numbers.
2. Sequences of real numbers.
II. Foundations of the theory of infinite series.
3. Series of positive terms.
4. Series of arbitrary terms.
5. Power series.
6. The expansions of the so-called elementary functions.
7. Infinite products.
8. Closed and numerical expressions for the sums of series.
III. Development of the theory.
9. Series of positive terms.
10. Series of arbitrary terms.
11. Series of variable terms.
12. Series of complex terms.
13. Divergent series.
14. Euler's summation formula and asymptotic expansions. |
|