Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur John Horton Conway
Documents disponibles écrits par cet auteur
Faire une suggestion Affiner la rechercheSphere packings, lattices and groups / John Horton Conway
Titre : Sphere packings, lattices and groups Type de document : texte imprimé Auteurs : John Horton Conway, Auteur ; N. J. A. Sloane, Auteur Editeur : Berlin : Springer Année de publication : 1988 Collection : Grundlehren der mathematischen wissenschaften num. 290 Importance : XXVII, 663 p. Format : 24 cm ISBN/ISSN/EAN : 978-0-387-96617-5 Note générale : Bibliogr. p. [572]- 639. - Index Langues : Anglais (eng) Mots-clés : Remplissage et recouvrement (géométrie combinatoire)
Sphère
Treillis, Théorie des
Groupes finis
Combinatorial packing and covering
Sphere
Lattice theory
Finite groupsIndex. décimale : 512.54 Groupes. Théorie des groupes Résumé : This book is mainly concerned with the problem of packing spheres in euclidean space of dimesions 1,2,3,4... given a large numbrer of equal spheres, what is the most efficient way to pack them together ? we also study several closely related problems : the kissing numbrer problem, which asks how many sphers can be arranged so that thely all touch one central sphere of the same size; the covering problem, which asks for the least dense way to cover n-dimensional space with equal overlapping spheres; and the quantizing problem, important for applications to analog-to-digital conversion, which asks how to place points in space so that average second moment of their their voronoi cells is as small as possible. Note de contenu : In summary :
1. Spher packings and kissing numbers.
2. Coverings, lattices and quantizers.
3. Codes, designs and groups.
4. Certain important lattices and their properties.
5. Sphere packing and error-correcting codes.
6. Laminated lattices.
7. Futher connections between codes and lattices.
8. Algebraic constructions for lattices.
9. Bounds for codes and sphere packings.
10. Three lectures on exceptional groups.
...Sphere packings, lattices and groups [texte imprimé] / John Horton Conway, Auteur ; N. J. A. Sloane, Auteur . - Springer, 1988 . - XXVII, 663 p. ; 24 cm. - (Grundlehren der mathematischen wissenschaften; 290) .
ISBN : 978-0-387-96617-5
Bibliogr. p. [572]- 639. - Index
Langues : Anglais (eng)
Mots-clés : Remplissage et recouvrement (géométrie combinatoire)
Sphère
Treillis, Théorie des
Groupes finis
Combinatorial packing and covering
Sphere
Lattice theory
Finite groupsIndex. décimale : 512.54 Groupes. Théorie des groupes Résumé : This book is mainly concerned with the problem of packing spheres in euclidean space of dimesions 1,2,3,4... given a large numbrer of equal spheres, what is the most efficient way to pack them together ? we also study several closely related problems : the kissing numbrer problem, which asks how many sphers can be arranged so that thely all touch one central sphere of the same size; the covering problem, which asks for the least dense way to cover n-dimensional space with equal overlapping spheres; and the quantizing problem, important for applications to analog-to-digital conversion, which asks how to place points in space so that average second moment of their their voronoi cells is as small as possible. Note de contenu : In summary :
1. Spher packings and kissing numbers.
2. Coverings, lattices and quantizers.
3. Codes, designs and groups.
4. Certain important lattices and their properties.
5. Sphere packing and error-correcting codes.
6. Laminated lattices.
7. Futher connections between codes and lattices.
8. Algebraic constructions for lattices.
9. Bounds for codes and sphere packings.
10. Three lectures on exceptional groups.
...Exemplaires
Code-barres Cote Support Localisation Section Disponibilité Etat_Exemplaire 056721 512.54 CON Papier Bibliothèque Centrale Mathématiques Disponible Consultation sur place