Titre : |
Data fusion for sensory information processing systems |
Type de document : |
texte imprimé |
Auteurs : |
James J. Clark, Auteur ; Alan L. Yuille, Auteur |
Editeur : |
Boston : Kluwer academic publishers |
Année de publication : |
1990 |
Collection : |
The kluwer international series in engineering and computer science |
Sous-collection : |
Robotics: vision, manipulation and sensors num. 105 |
Importance : |
XVIII-242 p. |
Présentation : |
ill. |
Format : |
25 cm |
ISBN/ISSN/EAN : |
978-0-7923-9120-3 |
Note générale : |
Bibliogr. p. 223-238. Index |
Langues : |
Anglais (eng) |
Mots-clés : |
Computer vision
Image processing
Multisensor data fusion
Vision par ordinateur
Traitement d'images
Fusion multicapteurs |
Index. décimale : |
681.3.02 Conception,construction et structures des systèmes machines et éléments de traitement de données.(Conception des systèmes) |
Résumé : |
Data fusion for sensory information processing systems provides a mathematical foundation upon which data fusion algorithms can be constructed and analyzed. The methodology presented in this text is motivated by a strong belief in the importance of constraints in sensory information processing systems. In this view, data fusion is best understood as the embedding of multiple constraints on the solution to a sensory information processing problem into the solution process. |
Note de contenu : |
Contents:
1. Introduction: The Role of Data Fusion in Sensory Systems.
2. Bayesian Sensory Information Processing.
3. Information Processing Using Energy Function Minimization.
4. Weakly vs. Strongly Coupled Data Fusion: A Classification of Fusional Methods.
5. Data Fusion Applied to Feature Based Stereo Algorithms.
6. Fusing Binocular and Monocular Depth Cues.
7. Data Fusion in Shape from Shading Algorithms.
8. Temporal Aspects of Data Fusion.
9. Towards a Constraint Based Theory of Sensory Data Fusion. |