Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Anthony, Martin
Documents disponibles écrits par cet auteur
Faire une suggestion Affiner la rechercheNeural network learning / Anthony, Martin
Titre : Neural network learning : theoretical foundations Type de document : texte imprimé Auteurs : Anthony, Martin, Auteur ; Bartlett, Peter L., Auteur Editeur : Cambridge Année de publication : 1999 Importance : 1 vol. (XIV-389 p.) Présentation : ill., couv. ill. Format : 23 cm ISBN/ISSN/EAN : 978-0-521-11862-0 Langues : Anglais (eng) Mots-clés : Ordinateurs neuronaux
Algorithmes
Réseaux neuronaux (informatique)
Neural networks (Computer science)Index. décimale : 681.3.022 Périphérique.Connecté(on-line).Terminaux. Résumé : First published in 1999, this book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Research on pattern classification with binary-output networks is surveyed, including a discussion of the relevance of the Vapnik-Chervonenkis dimension, and calculating estimates of the dimension for several neural network models. A model of classification by real-output networks is developed, and the usefulness of classification with a large margin' is demonstrated. The authors explain the role of scale-sensitive versions of the Vapnik-Chervonenkis dimension in large margin classification, and in real prediction. They also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient constructive learning algorithms. The book is self-contained and is intended to be accessible to researchers and graduate students in computer science, engineering, and mathematics. Note de contenu : Introduction, Part I. Pattern Recognition with Binary-output Neural Networks. The pattern recognition problem. The growth function and VC-dimension. General upper bounds on sample complexity. General lower bounds. The VC-dimension of linear threshold networks. Bounding the VC-dimension using geometric techniques. VC-dimension bounds for neural networks. Part II. Pattern Recognition with Real-output Neural Networks. Classification with real values. Covering numbers and uniform convergence. The pseudo-dimension and fat-shattering dimension. Bounding covering numbers with dimensions. The sample complexity of classification learning. The dimensions of neural networks. Model selection. Part III. Learning Real-Valued Functions. Learning classes of real functions. Uniform convergence results for real function classes. Bounding covering numbers. The sample complexity of learning function classes. Convex classes. Other learning problems. Part IV. Algorithmics. Efficient learning. Learning as optimisation. The Boolean perceptron. Hardness results for feed-forward networks. Constructive learning algorithms for two-layered networks Neural network learning : theoretical foundations [texte imprimé] / Anthony, Martin, Auteur ; Bartlett, Peter L., Auteur . - [S.l.] : Cambridge, 1999 . - 1 vol. (XIV-389 p.) : ill., couv. ill. ; 23 cm.
ISBN : 978-0-521-11862-0
Langues : Anglais (eng)
Mots-clés : Ordinateurs neuronaux
Algorithmes
Réseaux neuronaux (informatique)
Neural networks (Computer science)Index. décimale : 681.3.022 Périphérique.Connecté(on-line).Terminaux. Résumé : First published in 1999, this book describes theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Research on pattern classification with binary-output networks is surveyed, including a discussion of the relevance of the Vapnik-Chervonenkis dimension, and calculating estimates of the dimension for several neural network models. A model of classification by real-output networks is developed, and the usefulness of classification with a large margin' is demonstrated. The authors explain the role of scale-sensitive versions of the Vapnik-Chervonenkis dimension in large margin classification, and in real prediction. They also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient constructive learning algorithms. The book is self-contained and is intended to be accessible to researchers and graduate students in computer science, engineering, and mathematics. Note de contenu : Introduction, Part I. Pattern Recognition with Binary-output Neural Networks. The pattern recognition problem. The growth function and VC-dimension. General upper bounds on sample complexity. General lower bounds. The VC-dimension of linear threshold networks. Bounding the VC-dimension using geometric techniques. VC-dimension bounds for neural networks. Part II. Pattern Recognition with Real-output Neural Networks. Classification with real values. Covering numbers and uniform convergence. The pseudo-dimension and fat-shattering dimension. Bounding covering numbers with dimensions. The sample complexity of classification learning. The dimensions of neural networks. Model selection. Part III. Learning Real-Valued Functions. Learning classes of real functions. Uniform convergence results for real function classes. Bounding covering numbers. The sample complexity of learning function classes. Convex classes. Other learning problems. Part IV. Algorithmics. Efficient learning. Learning as optimisation. The Boolean perceptron. Hardness results for feed-forward networks. Constructive learning algorithms for two-layered networks Exemplaires
Code-barres Cote Support Localisation Section Disponibilité Etat_Exemplaire 052166 681.3.022 ANT Papier Bibliothèque Centrale Informatique Disponible