Titre : |
Algebraic theory of differential equations |
Type de document : |
texte imprimé |
Auteurs : |
Malcolm (1944-....) MacCallum, Éditeur scientifique ; Mikhailov, Alexander V., Éditeur scientifique |
Editeur : |
Cambridge : Cambridge University Press |
Année de publication : |
2009 |
Collection : |
London Mathematical Society lecture note series, ISSN 0076-0552 num. 357 |
Importance : |
VIII, 240 p. |
Présentation : |
ill. |
Format : |
23 cm |
ISBN/ISSN/EAN : |
978-0-521-72008-3 |
Note générale : |
Ce livre présente les communications données pendant une école d'été et un séminaire organisés à l'Université Heriot-Watt en juillet et août 2006. - Informations sur la publication (http://www.cambridge.org/9780521720083). - Références bibliogr. en fin de contributions |
Langues : |
Anglais (eng) |
Mots-clés : |
Équations différentielles -- Congrès
Nombres algébriques, Théorie des -- Congrès
Calcul différentiel -- Congrès
Differential equations -- Congresses
Algebraic number theory -- Congresses
Differential calculus -- Congresses |
Index. décimale : |
511.2 Théorie algébrique des nombres |
Résumé : |
These selected contributions reflect different approaches to the integration of differential equations, originating from Differential Galois Theory, Symmetry, Integrability and Soliton Theory. The ideas of several mathematical communities are here brought together and connections between them sought.
Integration of differential equations is a central problem in mathematics and several approaches have been developed by studying analytic, algebraic, and algorithmic aspects of the subject. One of these is Differential Galois Theory, developed by Kolchin and his school, and another originates from the Soliton Theory and Inverse Spectral Transform method, which was born in the works of Kruskal, Zabusky, Gardner, Green and Miura. Many other approaches have also been developed, but there has so far been no intersection between them. This unique introduction to the subject finally brings them together, with the aim of initiating interaction and collaboration between these various mathematical communities. The collection includes a LMS Invited Lecture Course by Michael F. Singer, together with some shorter lecture courses and review articles, all based upon a mini-programme held at the International Centre for Mathematical Sciences (ICMS) in Edinburgh. |
Note de contenu : |
Summary :
1. Galois theory of linear differential equations
2. Solving in closed form
3. Factorization of linear systems
4. Introduction to D-modules
5. Symbolic representation and classification of integrable systems
6. Searching for integrable (P)
7. Around differential Galois theory Anand Pillay |
Algebraic theory of differential equations [texte imprimé] / Malcolm (1944-....) MacCallum, Éditeur scientifique ; Mikhailov, Alexander V., Éditeur scientifique . - Cambridge : Cambridge University Press, 2009 . - VIII, 240 p. : ill. ; 23 cm. - ( London Mathematical Society lecture note series, ISSN 0076-0552; 357) . ISBN : 978-0-521-72008-3 Ce livre présente les communications données pendant une école d'été et un séminaire organisés à l'Université Heriot-Watt en juillet et août 2006. - Informations sur la publication (http://www.cambridge.org/9780521720083). - Références bibliogr. en fin de contributions Langues : Anglais ( eng)
Mots-clés : |
Équations différentielles -- Congrès
Nombres algébriques, Théorie des -- Congrès
Calcul différentiel -- Congrès
Differential equations -- Congresses
Algebraic number theory -- Congresses
Differential calculus -- Congresses |
Index. décimale : |
511.2 Théorie algébrique des nombres |
Résumé : |
These selected contributions reflect different approaches to the integration of differential equations, originating from Differential Galois Theory, Symmetry, Integrability and Soliton Theory. The ideas of several mathematical communities are here brought together and connections between them sought.
Integration of differential equations is a central problem in mathematics and several approaches have been developed by studying analytic, algebraic, and algorithmic aspects of the subject. One of these is Differential Galois Theory, developed by Kolchin and his school, and another originates from the Soliton Theory and Inverse Spectral Transform method, which was born in the works of Kruskal, Zabusky, Gardner, Green and Miura. Many other approaches have also been developed, but there has so far been no intersection between them. This unique introduction to the subject finally brings them together, with the aim of initiating interaction and collaboration between these various mathematical communities. The collection includes a LMS Invited Lecture Course by Michael F. Singer, together with some shorter lecture courses and review articles, all based upon a mini-programme held at the International Centre for Mathematical Sciences (ICMS) in Edinburgh. |
Note de contenu : |
Summary :
1. Galois theory of linear differential equations
2. Solving in closed form
3. Factorization of linear systems
4. Introduction to D-modules
5. Symbolic representation and classification of integrable systems
6. Searching for integrable (P)
7. Around differential Galois theory Anand Pillay |
|  |