Titre : |
Manifolds and differential geometry |
Type de document : |
texte imprimé |
Auteurs : |
Lee, Jeffrey Marc, Auteur |
Editeur : |
Rhode Island [États-Unis] : American mathematical society |
Année de publication : |
2009 |
Collection : |
Graduate studies in mathematics num. 107 |
Importance : |
XIV, 671 p. |
Présentation : |
ill. |
Format : |
27 cm |
ISBN/ISSN/EAN : |
978-0-8218-4815-9 |
Note générale : |
Bibliogr. p. 663-666. - Index |
Langues : |
Anglais (eng) |
Mots-clés : |
Geometry, Differential
Topological manifolds
Riemannian manifolds
Géométrie différentielle
Variétés topologiques
Riemann, Variétés de |
Index. décimale : |
514.7 Géométrie différentielle. Méthodes algébriques et analytiques en géométrie |
Résumé : |
Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology. |
Note de contenu : |
Summary :
1. Differentiable manifolds
2. The tangent structure
3. Immersion and submersion
4. Curves and hypersurfaces in Euclidean space
5. Lie groups
6. Fiber bundles
7. Tensors
8. Differential forms
9. Integration and Stokes' theorem
10. De Rham cohomology
11. Distributions and Frobenius' theorem
12. Connections and covariant derivatives
13. Riemannian and semi-Riemannian geometry
14. The language of category theory
15. Topology
16. Some calculus theorems
17. Modules and multilinearity |
Manifolds and differential geometry [texte imprimé] / Lee, Jeffrey Marc, Auteur . - Rhode Island [États-Unis] : American mathematical society, 2009 . - XIV, 671 p. : ill. ; 27 cm. - ( Graduate studies in mathematics; 107) . ISBN : 978-0-8218-4815-9 Bibliogr. p. 663-666. - Index Langues : Anglais ( eng)
Mots-clés : |
Geometry, Differential
Topological manifolds
Riemannian manifolds
Géométrie différentielle
Variétés topologiques
Riemann, Variétés de |
Index. décimale : |
514.7 Géométrie différentielle. Méthodes algébriques et analytiques en géométrie |
Résumé : |
Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology. |
Note de contenu : |
Summary :
1. Differentiable manifolds
2. The tangent structure
3. Immersion and submersion
4. Curves and hypersurfaces in Euclidean space
5. Lie groups
6. Fiber bundles
7. Tensors
8. Differential forms
9. Integration and Stokes' theorem
10. De Rham cohomology
11. Distributions and Frobenius' theorem
12. Connections and covariant derivatives
13. Riemannian and semi-Riemannian geometry
14. The language of category theory
15. Topology
16. Some calculus theorems
17. Modules and multilinearity |
|  |