Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Ogunfunmi ,Tokunbo
Documents disponibles écrits par cet auteur
Faire une suggestion Affiner la rechercheAdaptive nonlinear system identification / Ogunfunmi ,Tokunbo
Titre : Adaptive nonlinear system identification : the volterra and wiener model approaches Type de document : document électronique Auteurs : Ogunfunmi ,Tokunbo, Auteur Editeur : Berlin : Springer Année de publication : 2007 Collection : Engineering ISBN/ISSN/EAN : 978-0-387-26328-1 Langues : Anglais (eng) Mots-clés : Traitement du signal
Théories non linéaires
Filtres (mathématiques)
Systèmes adaptatifs -- Modèles mathématiques
Systèmes non linéaires -- Modèles mathématiques
Systèmes -- Identification -- Modèles mathématiquesIndex. décimale : 681.51 Systemes de régulation automatique en général.caractéristiques techniques de la cybernétique Résumé : Adaptive Nonlinear System Identification: The Volterra and Wiener Model Approaches introduces engineers and researchers to the field of nonlinear adaptive system identification. The book includes recent research results in the area of adaptive nonlinear system identification and presents simple, concise, easy-to-understand methods for identifying nonlinear systems. These methods use adaptive filter algorithms that are well known for linear systems identification. They are applicable for nonlinear systems that can be efficiently modeled by polynomials.
After a brief introduction to nonlinear systems and to adaptive system identification, the author presents the discrete Volterra model approach. This is followed by an explanation of the Wiener model approach. Adaptive algorithms using both models are developed. The performance of the two methods are then compared to determine which model performs better for system identification applications.
Adaptive Nonlinear System Identification: The Volterra and Wiener Model Approaches is useful to graduates students, engineers and researchers in the areas of nonlinear systems, control, biomedical systems and in adaptive signal processing.Note de contenu : Table of contents
Introduction to Nonlinear Systems.- Polynomial Models for Nonlinear Systems.- Volterra and Wiener Nonlinear Models.- Nonlinear System Indentification Methods.- Introduction to Adaptive Signal Processing.- Nonlinear Adaptive System Identification based on Volterra Models.- Nonlinear Adaptive System Identification based on Wiener Models: Part I.- Nonlinear Adaptive System Identification based on Wiener Models: Part II.- Nonlinear Adaptive System Identification based on Wiener Models: Part III.- Nonlinear Adaptive System Identification based on Wiener Models: Part IV.- Conclusions, Recent Results, and New Directions.Adaptive nonlinear system identification : the volterra and wiener model approaches [document électronique] / Ogunfunmi ,Tokunbo, Auteur . - Springer, 2007. - (Engineering) .
ISBN : 978-0-387-26328-1
Langues : Anglais (eng)
Mots-clés : Traitement du signal
Théories non linéaires
Filtres (mathématiques)
Systèmes adaptatifs -- Modèles mathématiques
Systèmes non linéaires -- Modèles mathématiques
Systèmes -- Identification -- Modèles mathématiquesIndex. décimale : 681.51 Systemes de régulation automatique en général.caractéristiques techniques de la cybernétique Résumé : Adaptive Nonlinear System Identification: The Volterra and Wiener Model Approaches introduces engineers and researchers to the field of nonlinear adaptive system identification. The book includes recent research results in the area of adaptive nonlinear system identification and presents simple, concise, easy-to-understand methods for identifying nonlinear systems. These methods use adaptive filter algorithms that are well known for linear systems identification. They are applicable for nonlinear systems that can be efficiently modeled by polynomials.
After a brief introduction to nonlinear systems and to adaptive system identification, the author presents the discrete Volterra model approach. This is followed by an explanation of the Wiener model approach. Adaptive algorithms using both models are developed. The performance of the two methods are then compared to determine which model performs better for system identification applications.
Adaptive Nonlinear System Identification: The Volterra and Wiener Model Approaches is useful to graduates students, engineers and researchers in the areas of nonlinear systems, control, biomedical systems and in adaptive signal processing.Note de contenu : Table of contents
Introduction to Nonlinear Systems.- Polynomial Models for Nonlinear Systems.- Volterra and Wiener Nonlinear Models.- Nonlinear System Indentification Methods.- Introduction to Adaptive Signal Processing.- Nonlinear Adaptive System Identification based on Volterra Models.- Nonlinear Adaptive System Identification based on Wiener Models: Part I.- Nonlinear Adaptive System Identification based on Wiener Models: Part II.- Nonlinear Adaptive System Identification based on Wiener Models: Part III.- Nonlinear Adaptive System Identification based on Wiener Models: Part IV.- Conclusions, Recent Results, and New Directions.Exemplaires
Code-barres Cote Support Localisation Section Disponibilité Etat_Exemplaire E00137 681.51 OGU Ressources électroniques Bibliothèque Centrale Automatique Disponible E00138 681.51 OGU Ressources électroniques Bibliothèque Centrale Automatique Disponible