Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Lee, Te-Won
Documents disponibles écrits par cet auteur
Faire une suggestion Affiner la rechercheBlind speech separation / Shiba, Shoji
Titre : Blind speech separation Type de document : document électronique Auteurs : Shiba, Shoji, Auteur ; Lee, Te-Won, Auteur Editeur : Berlin : Springer Année de publication : 2007 Collection : Signals and communication technology ISBN/ISSN/EAN : 978-1-402-06479-1 Langues : Anglais (eng) Mots-clés : Télécommunication Engineering Signal, Image and Speech Processing Résumé : This is the first book to provide a cutting edge reference to the fascinating topic of blind source separation (BSS) for convolved speech mixtures. Through contributions by the foremost experts on the subject, the book provides an up-to-date account of research findings, explains the underlying theory, and discusses potential applications. The individual chapters are designed to be tutorial in nature with specific emphasis on an in-depth treatment of state of the art techniques.
Blind Speech Separation is divided into three parts:
Part 1 presents overdetermined or critically determined BSS. Here the main technology is independent component analysis (ICA). ICA is a statistical method for extracting mutually independent sources from their mixtures. This approach utilizes spatial diversity to discriminate between desired and undesired components, i.e., it reduces the undesired components by forming a spatial null towards them. It is, in fact, a blind adaptive beamformer realized by unsupervised adaptive filtering.
Part 2 addresses underdetermined BSS, where there are fewer microphones than source signals. Here, the sparseness of speech sources is very useful; we can utilize time-frequency diversity, where sources are active in different regions of the time-frequency plane.
Part 3 presents monaural BSS where there is only one microphone. Here, we can separate a mixture by using the harmonicity and temporal structure of the sources. We can build a probabilistic framework by assuming a source model, and separate a mixture by maximizing the a posteriori probability of the sources.Blind speech separation [document électronique] / Shiba, Shoji, Auteur ; Lee, Te-Won, Auteur . - Springer, 2007. - (Signals and communication technology) .
ISBN : 978-1-402-06479-1
Langues : Anglais (eng)
Mots-clés : Télécommunication Engineering Signal, Image and Speech Processing Résumé : This is the first book to provide a cutting edge reference to the fascinating topic of blind source separation (BSS) for convolved speech mixtures. Through contributions by the foremost experts on the subject, the book provides an up-to-date account of research findings, explains the underlying theory, and discusses potential applications. The individual chapters are designed to be tutorial in nature with specific emphasis on an in-depth treatment of state of the art techniques.
Blind Speech Separation is divided into three parts:
Part 1 presents overdetermined or critically determined BSS. Here the main technology is independent component analysis (ICA). ICA is a statistical method for extracting mutually independent sources from their mixtures. This approach utilizes spatial diversity to discriminate between desired and undesired components, i.e., it reduces the undesired components by forming a spatial null towards them. It is, in fact, a blind adaptive beamformer realized by unsupervised adaptive filtering.
Part 2 addresses underdetermined BSS, where there are fewer microphones than source signals. Here, the sparseness of speech sources is very useful; we can utilize time-frequency diversity, where sources are active in different regions of the time-frequency plane.
Part 3 presents monaural BSS where there is only one microphone. Here, we can separate a mixture by using the harmonicity and temporal structure of the sources. We can build a probabilistic framework by assuming a source model, and separate a mixture by maximizing the a posteriori probability of the sources.Exemplaires
Code-barres Cote Support Localisation Section Disponibilité Etat_Exemplaire E00163 681.3 SHI Ressources électroniques Bibliothèque Centrale Informatique Disponible E00164 681.3 SHI Ressources électroniques Bibliothèque Centrale Informatique Disponible