Titre : |
Almost periodic functions |
Type de document : |
texte imprimé |
Auteurs : |
Besicovitch, Abram Samoilovitch, Auteur |
Editeur : |
New York : Dover publications |
Année de publication : |
1954 |
Importance : |
XIII-180 p. |
Format : |
20 cm |
Note générale : |
Bibliogr. p. [179]-180. Index |
Langues : |
Anglais (eng) |
Mots-clés : |
Almost periodic functions
Fourier series
Harmonic analysis |
Index. décimale : |
517.5 Théorie des fonctions |
Résumé : |
The first portion of this book establishes theorems of uniformly a. p. functions, including Bohr's original work, and de la Vallée Poussin's ingenious short proof based on classical theory of purely periodic functions. It considers such matters as summation of Fourier series of u.a.p functions by partial sums, the brochner-Fejer summation of u.a.p. functions, particular cases of Fourier series, and u.a.p. functions of two variables.
The second portion of this work covers generalizations and extensions of the original theory, discussing relaxation of continuity restriction, auxiliary theorems and formulae, the Parseval equation and the Riesc-Fischer theorem, and similar matters. The third chapter discusses analytic a.p. functions, including results. |
Note de contenu : |
In summary :
1. Uniformly almost periodic functiond
2. Generalisation of almost periodic functions
3. Analytic almost periodic functions |
Almost periodic functions [texte imprimé] / Besicovitch, Abram Samoilovitch, Auteur . - New York : Dover publications, 1954 . - XIII-180 p. ; 20 cm. Bibliogr. p. [179]-180. Index Langues : Anglais ( eng)
Mots-clés : |
Almost periodic functions
Fourier series
Harmonic analysis |
Index. décimale : |
517.5 Théorie des fonctions |
Résumé : |
The first portion of this book establishes theorems of uniformly a. p. functions, including Bohr's original work, and de la Vallée Poussin's ingenious short proof based on classical theory of purely periodic functions. It considers such matters as summation of Fourier series of u.a.p functions by partial sums, the brochner-Fejer summation of u.a.p. functions, particular cases of Fourier series, and u.a.p. functions of two variables.
The second portion of this work covers generalizations and extensions of the original theory, discussing relaxation of continuity restriction, auxiliary theorems and formulae, the Parseval equation and the Riesc-Fischer theorem, and similar matters. The third chapter discusses analytic a.p. functions, including results. |
Note de contenu : |
In summary :
1. Uniformly almost periodic functiond
2. Generalisation of almost periodic functions
3. Analytic almost periodic functions |
|