| 
					| Titre : | Measurement uncertainties in science and technology |  
					| Type de document : | texte imprimé |  
					| Auteurs : | Grabe, Michael, Auteur |  
					| Editeur : | Berlin ; London ; Cham : Springer |  
					| Année de publication : | 2005 |  
					| Importance : | VIII-XI-259 p. |  
					| Présentation : | ill. |  
					| Format : | 25 cm |  
					| ISBN/ISSN/EAN : | 978-3-540-20944-7 |  
					| Note générale : | Bibliogr. [263]-265 p. Index |  
					| Langues : | Anglais (eng) |  
					| Mots-clés : | Mesures Calcul d'erreur
 Variables instrumentales (statistique)
 Mensuration
 Error analysis (Mathematics)
 Instrumental variables (Statistics)
 Incertitude de mesure
 Poids et mesures -- Normalisation
 Sciences -- Méthodologie
 |  
					| Index. décimale : | 519.248 Statistique de l’ingénierie. Statistique de la recherche opérationnelle. Théorie des files. Contrôle de qualité. Fiabilité etc |  
					| Résumé : | At the turn of the 19th century, Carl Friedrich Gauß founded error calculus by predicting the then unknown position of the planet Ceres. Ever since, error calculus has occupied a place at the heart of science. In this book, the author illustrates the breakdown of traditional error calculus in the face of modern measurement techniques. Revising Gauß' error calculus ab initio, he treats random and unknown systematic errors on an equal footing from the outset. Furthermore, he also proposes what may be called well defined measuring conditions, a prerequisite for defining confidence intervals that are consistent with basic statistical concepts. The resulting measurement uncertainties are as robust and reliable as required by modern-day science, engineering and technology |  
					| Note de contenu : | Sommaire: 1.Properties of Measurement Results
 2.Formalization of Measuring Processes
 3.Densities Derived from Normal Parent Distributions
 4.Estimators and their Expectations
 5.Combination of Measurement Errors
 6.Propagation of Measurement Errors
 7.Least Squares Formalism
 8.Consequences of Systematic Errors
 9.Uncertainties of Least Squares Estimators
 10.Systems Based on Two Parameters
 11.Systems Based on Three Parameters
 12.Special Metrology Systems
 | 
Measurement uncertainties in science and technology [texte imprimé] / Grabe, Michael , Auteur . - Berlin ; London ; Cham : Springer , 2005 . - VIII-XI-259 p. : ill. ; 25 cm.ISBN  : 978-3-540-20944-7 Bibliogr. [263]-265 p. IndexLangues  : Anglais (eng ) 
					| Mots-clés : | Mesures Calcul d'erreur
 Variables instrumentales (statistique)
 Mensuration
 Error analysis (Mathematics)
 Instrumental variables (Statistics)
 Incertitude de mesure
 Poids et mesures -- Normalisation
 Sciences -- Méthodologie
 |  
					| Index. décimale : | 519.248 Statistique de l’ingénierie. Statistique de la recherche opérationnelle. Théorie des files. Contrôle de qualité. Fiabilité etc |  
					| Résumé : | At the turn of the 19th century, Carl Friedrich Gauß founded error calculus by predicting the then unknown position of the planet Ceres. Ever since, error calculus has occupied a place at the heart of science. In this book, the author illustrates the breakdown of traditional error calculus in the face of modern measurement techniques. Revising Gauß' error calculus ab initio, he treats random and unknown systematic errors on an equal footing from the outset. Furthermore, he also proposes what may be called well defined measuring conditions, a prerequisite for defining confidence intervals that are consistent with basic statistical concepts. The resulting measurement uncertainties are as robust and reliable as required by modern-day science, engineering and technology |  
					| Note de contenu : | Sommaire: 1.Properties of Measurement Results
 2.Formalization of Measuring Processes
 3.Densities Derived from Normal Parent Distributions
 4.Estimators and their Expectations
 5.Combination of Measurement Errors
 6.Propagation of Measurement Errors
 7.Least Squares Formalism
 8.Consequences of Systematic Errors
 9.Uncertainties of Least Squares Estimators
 10.Systems Based on Two Parameters
 11.Systems Based on Three Parameters
 12.Special Metrology Systems
 | 
 |  |