Titre : |
Calculus of variations |
Type de document : |
texte imprimé |
Auteurs : |
I. M. Gelfand, Auteur ; S. V. Fomin, Auteur ; Richard A. Silverman, Traducteur |
Editeur : |
London : Prentice-Hall |
Année de publication : |
1963 |
Importance : |
VII-232 p. |
Présentation : |
ill. |
Format : |
24 cm |
Note générale : |
Bibliogr. p. 227 |
Langues : |
Anglais (eng) |
Mots-clés : |
Mathématiques -- Variations théorie |
Index. décimale : |
519.34 Procédés directs du calcul des variations (Principe de Dirichlet, procédé de Ritz, etc.) |
Résumé : |
This book is a modern introduction to the calculus of variations and certain of its ramifications, that its fresh and lively point of view will serve to make it a welcome addition to the english-language literature on the subject. The present edition is rather different from the Russian original. |
Note de contenu : |
Contents :
1. Elements of the theory.
2. Further generalizations.
3. The general variation of a functional.
4. The canonical form of the euler equations and related topics.
5. The second variation. Sufficient conditions for a weak extremum.
6. Fields. Suffivient conditions for a strong extremum.
7. Variational problems involving multiple integrals.
8. Direct methods in the calculus of variations. |
Calculus of variations [texte imprimé] / I. M. Gelfand, Auteur ; S. V. Fomin, Auteur ; Richard A. Silverman, Traducteur . - London : Prentice-Hall, 1963 . - VII-232 p. : ill. ; 24 cm. Bibliogr. p. 227 Langues : Anglais ( eng)
Mots-clés : |
Mathématiques -- Variations théorie |
Index. décimale : |
519.34 Procédés directs du calcul des variations (Principe de Dirichlet, procédé de Ritz, etc.) |
Résumé : |
This book is a modern introduction to the calculus of variations and certain of its ramifications, that its fresh and lively point of view will serve to make it a welcome addition to the english-language literature on the subject. The present edition is rather different from the Russian original. |
Note de contenu : |
Contents :
1. Elements of the theory.
2. Further generalizations.
3. The general variation of a functional.
4. The canonical form of the euler equations and related topics.
5. The second variation. Sufficient conditions for a weak extremum.
6. Fields. Suffivient conditions for a strong extremum.
7. Variational problems involving multiple integrals.
8. Direct methods in the calculus of variations. |
|