Titre : |
Prediction in time series regression models |
Type de document : |
texte imprimé |
Auteurs : |
Frantisek Stulajter, Auteur |
Editeur : |
Berlin ; London ; Cham : Springer |
Année de publication : |
2002 |
Importance : |
VIII-231 p. |
Présentation : |
ill. |
Format : |
25 cm |
ISBN/ISSN/EAN : |
978-0-387-95350-2 |
Note générale : |
Bibliogr. p. [223]-227. Index |
Langues : |
Français (fre) |
Mots-clés : |
Time-series analysis
Regression analysis
Processus stochastiques
Séries chronologiques
Analyse de régression |
Index. décimale : |
519.22 Théorie statistique. Modèles statistiques. Statistiques mathématiques |
Résumé : |
This book deal with the statiscal analysis of time series and covers situations that do not fit into the framework of stationary time series, as other. Estimators and their properties are presented for regression parametres of reqression model describing linearly or nonlinearly the mean and the covariance functions of general time series. Using these models, a cohesive theory and methods of predictions of time series are developed. The methods are useful for all application where trend and oscillations of time correlated data should be carfully modeled, e.g., ecology, econometrics, and finance series. |
Note de contenu : |
Contents
*Basic Mathematics and Statistics
*Random Processes and Time Series
*Estimation of Time Series Parameters
*Predictions in Time Series
*Empirical Predictors |
Prediction in time series regression models [texte imprimé] / Frantisek Stulajter, Auteur . - Berlin ; London ; Cham : Springer, 2002 . - VIII-231 p. : ill. ; 25 cm. ISBN : 978-0-387-95350-2 Bibliogr. p. [223]-227. Index Langues : Français ( fre)
Mots-clés : |
Time-series analysis
Regression analysis
Processus stochastiques
Séries chronologiques
Analyse de régression |
Index. décimale : |
519.22 Théorie statistique. Modèles statistiques. Statistiques mathématiques |
Résumé : |
This book deal with the statiscal analysis of time series and covers situations that do not fit into the framework of stationary time series, as other. Estimators and their properties are presented for regression parametres of reqression model describing linearly or nonlinearly the mean and the covariance functions of general time series. Using these models, a cohesive theory and methods of predictions of time series are developed. The methods are useful for all application where trend and oscillations of time correlated data should be carfully modeled, e.g., ecology, econometrics, and finance series. |
Note de contenu : |
Contents
*Basic Mathematics and Statistics
*Random Processes and Time Series
*Estimation of Time Series Parameters
*Predictions in Time Series
*Empirical Predictors |
|  |