Titre : |
The theory of matrices |
Type de document : |
texte imprimé |
Auteurs : |
Cyrus Colton MacDuffee, Auteur |
Editeur : |
New York : Chelsea publishing company |
Année de publication : |
[19??] |
Collection : |
Ergebnisse der mathematik und ihrer grenzgebiete num. 2 |
Importance : |
110 p. |
Format : |
24 cm |
Note générale : |
Bibliogr. at the end of chapters |
Langues : |
Anglais (eng) |
Mots-clés : |
Algèbre linéaire
Matrice |
Index. décimale : |
512.8 Algèbre supérieure. Déterminants. Substitutions linéaires. Elimination. Théorie algébrique des formes. Invariants et covariants. |
Résumé : |
Matrice algebra is a mathematical abstraction underlying many seemingly diverse theories. Thus bilinear and quadratic forms, linéar associative algebra, linear homogeneous transformations and linear vector function are various manifestation of matric algebra. Other branches of mathematics as number theory, differential and integral equations, continued fractions, projective geometry ect... |
Note de contenu : |
Summary :
1. Matrices, arrays and determinants.
2. The characteristic equation.
3. Associated integral matrices.
4. Equivalence.
5. Congruence.
6. Similarity.
7. Composition of matrices.
8. Matric equations.
9. Functions of matrices.
10. Matrices of infinite order. |
The theory of matrices [texte imprimé] / Cyrus Colton MacDuffee, Auteur . - New York : Chelsea publishing company, [19??] . - 110 p. ; 24 cm. - ( Ergebnisse der mathematik und ihrer grenzgebiete; 2) . Bibliogr. at the end of chapters Langues : Anglais ( eng)
Mots-clés : |
Algèbre linéaire
Matrice |
Index. décimale : |
512.8 Algèbre supérieure. Déterminants. Substitutions linéaires. Elimination. Théorie algébrique des formes. Invariants et covariants. |
Résumé : |
Matrice algebra is a mathematical abstraction underlying many seemingly diverse theories. Thus bilinear and quadratic forms, linéar associative algebra, linear homogeneous transformations and linear vector function are various manifestation of matric algebra. Other branches of mathematics as number theory, differential and integral equations, continued fractions, projective geometry ect... |
Note de contenu : |
Summary :
1. Matrices, arrays and determinants.
2. The characteristic equation.
3. Associated integral matrices.
4. Equivalence.
5. Congruence.
6. Similarity.
7. Composition of matrices.
8. Matric equations.
9. Functions of matrices.
10. Matrices of infinite order. |
|