Titre : |
An introduction to probability theory and its applications. Vol. 1 |
Type de document : |
texte imprimé |
Auteurs : |
wlliam Feller, Auteur |
Editeur : |
New York : John Wiley & Sons |
Année de publication : |
1968 |
Collection : |
Wiley series in probability and mathematical statistics. Probability and mathematical statistics |
Importance : |
XVIII-510 p. |
Format : |
24 cm |
Note générale : |
Notes bibliogr. Index |
Langues : |
Anglais (eng) |
Mots-clés : |
Mathématiques .
Probabilités .
Analyse combinatoire |
Index. décimale : |
519 Analyse combinatoire. Calcul des probabilités, etc. |
Résumé : |
Major changes in this edition include the substitution of probabilistic arguments for combinatorial artifices, and the addition of new sections on branching processes, Markov chains, and the De Moivre-Laplace theorem. |
Note de contenu : |
Au sommaire :
- The nature of probability theory
- The sample space
- Elements of cominatorial analysis
- Fluctuations in coin tossing and random walks
- Combination of events
- Conditional probability. Stochastic independence
- The normal approximation to the binomial distribution
- Unlimited sequences of bernoulli trials
- Random variables; expectation
- Laws of large numbers
- Integral valued variables. Generating functions
- Compound distributions. Branching processes...
|
An introduction to probability theory and its applications. Vol. 1 [texte imprimé] / wlliam Feller, Auteur . - New York : John Wiley & Sons, 1968 . - XVIII-510 p. ; 24 cm. - ( Wiley series in probability and mathematical statistics. Probability and mathematical statistics) . Notes bibliogr. Index Langues : Anglais ( eng)
Mots-clés : |
Mathématiques .
Probabilités .
Analyse combinatoire |
Index. décimale : |
519 Analyse combinatoire. Calcul des probabilités, etc. |
Résumé : |
Major changes in this edition include the substitution of probabilistic arguments for combinatorial artifices, and the addition of new sections on branching processes, Markov chains, and the De Moivre-Laplace theorem. |
Note de contenu : |
Au sommaire :
- The nature of probability theory
- The sample space
- Elements of cominatorial analysis
- Fluctuations in coin tossing and random walks
- Combination of events
- Conditional probability. Stochastic independence
- The normal approximation to the binomial distribution
- Unlimited sequences of bernoulli trials
- Random variables; expectation
- Laws of large numbers
- Integral valued variables. Generating functions
- Compound distributions. Branching processes...
|
|