Titre : |
Chaotic Dynamics : an Introduction |
Type de document : |
texte imprimé |
Auteurs : |
Gregory L, Baker, Auteur ; Jerry P. Gollub, Auteur |
Mention d'édition : |
2 éd |
Editeur : |
Cambridge : Cambridge University Press |
Année de publication : |
1996 |
Importance : |
xiv-256 p. |
Présentation : |
ill. |
Format : |
26 cm |
ISBN/ISSN/EAN : |
978-0-521-47685-0 |
Note générale : |
Bibliogr.p.246-252.-Index
|
Langues : |
Anglais (eng) |
Mots-clés : |
Chaos (théorie des systèmes)
Pendule
Systèmes non linéaires
Systèmes dynamiques
Pendulum
Chaotic behavior in systems |
Index. décimale : |
531.395 Dynamique de systèmes sujets à des conditions variant dans le temps |
Résumé : |
The remarkable fact that determinism does not imply either regular behavior or predictability has had a major impact on many fields of science, engineering, and mathematics.The discovery of chaos changes our understanding of the foundations of physics, and has many practical applications as well.This subject sheds new light on the workings of lasers, fluids, mechanical structures,chemical reactions,earthquakes,neural networks,and biological rhythms. |
Note de contenu : |
Chapter one Introduction
Chapter two Some helpful tools
Chapter three Visualization of the pendulum's dynamics
Chapter four Toward an understanding of chaos
Chapter five The characterization of chaotic attractors
Chapter six Experimental characterization,prediction,and modification of chaotic states
Chapter seven Chaos broadly applied |
Chaotic Dynamics : an Introduction [texte imprimé] / Gregory L, Baker, Auteur ; Jerry P. Gollub, Auteur . - 2 éd . - Cambridge : Cambridge University Press, 1996 . - xiv-256 p. : ill. ; 26 cm. ISBN : 978-0-521-47685-0 Bibliogr.p.246-252.-Index
Langues : Anglais ( eng)
Mots-clés : |
Chaos (théorie des systèmes)
Pendule
Systèmes non linéaires
Systèmes dynamiques
Pendulum
Chaotic behavior in systems |
Index. décimale : |
531.395 Dynamique de systèmes sujets à des conditions variant dans le temps |
Résumé : |
The remarkable fact that determinism does not imply either regular behavior or predictability has had a major impact on many fields of science, engineering, and mathematics.The discovery of chaos changes our understanding of the foundations of physics, and has many practical applications as well.This subject sheds new light on the workings of lasers, fluids, mechanical structures,chemical reactions,earthquakes,neural networks,and biological rhythms. |
Note de contenu : |
Chapter one Introduction
Chapter two Some helpful tools
Chapter three Visualization of the pendulum's dynamics
Chapter four Toward an understanding of chaos
Chapter five The characterization of chaotic attractors
Chapter six Experimental characterization,prediction,and modification of chaotic states
Chapter seven Chaos broadly applied |
|  |