Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail d'une collection
Collection Statistics for engineering and information science
- Editeur : Springer
- ISSN : pas d'ISSN
Documents disponibles dans la collection
Faire une suggestion Affiner la rechercheProbabilistic networks and expert systems / Cowell , Robert G. ; Dawid , Philip A.
Titre : Probabilistic networks and expert systems Type de document : texte imprimé Auteurs : Cowell , Robert G., Auteur ; Dawid , Philip A., Auteur ; Lauritzen , Steffen, Auteur Editeur : Berlin : Springer Année de publication : 1999 Collection : Statistics for engineering and information science Importance : XII-321 p. Présentation : ill. Format : 24 cm ISBN/ISSN/EAN : 978-0-387-98767-5 Note générale : Bibliogr. p. [281]-305. Index Langues : Anglais (eng) Mots-clés : Probabilities
Expert systems (Computer science)
Probabilités
Systèmes experts (informatique)
Intelligence artificielle -- Méthodes statistiquesIndex. décimale : 681.3.02 Conception,construction et structures des systèmes machines et éléments de traitement de données.(Conception des systèmes) Résumé : Probabilistic expert systems are graphical networks that support the modelling of uncertainty and decisions in large complex domains, while retaining ease of calculation. Building on original research by the authors over a number of years, this book gives a thorough and rigorous mathematical treatment of the underlying ideas, structures and algorithms, emphasizing those cases in which exact answers are obtainable. It covers both the updating of probabilistic uncertainty in the light of new evidence, and statistical inference, about unknown probabilities or unknown model structure, in the light of new data.
The book will be of interest to researchers and graduate students in artificial intelligence who desire an understanding of the mathematical and statistical basis of probabilistic expert systems, and to students and research workers in statistics wanting an introduction to this fascinating and rapidly developing field. The careful attention to detail will also make this work an important reference source for all those involved in the theory and applications of probabilistic expert systemsNote de contenu :
- Logic, Uncertainty, and Probability
- Building and Using Probabilistic Networks
- Graph Theory
- Discrete Networks
- Gaussian and Mixed Discrete-Gaussian Networks
- Discrete Multistage Decision Networks
- Learning About Probabilities
- Checking Models Against Data
- Structural Learning
A Conjugate Analysis for Discrete Data
B Gibbs Sampling
C Information and Software on the World Wide WebProbabilistic networks and expert systems [texte imprimé] / Cowell , Robert G., Auteur ; Dawid , Philip A., Auteur ; Lauritzen , Steffen, Auteur . - Springer, 1999 . - XII-321 p. : ill. ; 24 cm. - (Statistics for engineering and information science) .
ISBN : 978-0-387-98767-5
Bibliogr. p. [281]-305. Index
Langues : Anglais (eng)
Mots-clés : Probabilities
Expert systems (Computer science)
Probabilités
Systèmes experts (informatique)
Intelligence artificielle -- Méthodes statistiquesIndex. décimale : 681.3.02 Conception,construction et structures des systèmes machines et éléments de traitement de données.(Conception des systèmes) Résumé : Probabilistic expert systems are graphical networks that support the modelling of uncertainty and decisions in large complex domains, while retaining ease of calculation. Building on original research by the authors over a number of years, this book gives a thorough and rigorous mathematical treatment of the underlying ideas, structures and algorithms, emphasizing those cases in which exact answers are obtainable. It covers both the updating of probabilistic uncertainty in the light of new evidence, and statistical inference, about unknown probabilities or unknown model structure, in the light of new data.
The book will be of interest to researchers and graduate students in artificial intelligence who desire an understanding of the mathematical and statistical basis of probabilistic expert systems, and to students and research workers in statistics wanting an introduction to this fascinating and rapidly developing field. The careful attention to detail will also make this work an important reference source for all those involved in the theory and applications of probabilistic expert systemsNote de contenu :
- Logic, Uncertainty, and Probability
- Building and Using Probabilistic Networks
- Graph Theory
- Discrete Networks
- Gaussian and Mixed Discrete-Gaussian Networks
- Discrete Multistage Decision Networks
- Learning About Probabilities
- Checking Models Against Data
- Structural Learning
A Conjugate Analysis for Discrete Data
B Gibbs Sampling
C Information and Software on the World Wide WebExemplaires
Code-barres Cote Support Localisation Section Disponibilité Etat_Exemplaire 046361 681.3.02 PRO Papier Bibliothèque Centrale Informatique Disponible Consultation sur place