Titre : |
Advances in mathematical fluid mechanics |
Type de document : |
texte imprimé |
Auteurs : |
Malek , Josef, Éditeur scientifique ; Jindrich Necas, Éditeur scientifique ; Rokyta , Miko, Éditeur scientifique |
Congrès : |
International school mathemacal theory in fluid mechanics (6; 19-26 sept.embre 1999; Paseky, Tchéquie), Auteur |
Editeur : |
Berlin ; London ; Cham : Springer |
Année de publication : |
2000 |
Importance : |
XVIII-222 p. |
Format : |
24 cm |
ISBN/ISSN/EAN : |
978-3-540-67786-4 |
Note générale : |
Bibliogr. |
Langues : |
Anglais (eng) |
Mots-clés : |
Fluides, Mécanique des Mathématiques -- Actes de congrès |
Index. décimale : |
532 Mécanique des fluides. Mécanique des liquides. Hydraulique. Hydromécanique. |
Résumé : |
This book consists of six survey contributions, focusing on several open problems of theoreticl fluid mechanics both for incompressible and compressible fluids. the following topic are studied intensively within the book: global in time qualitative propries of solutions to compressible fluid models; fluide mechanics limits as compressible-incompressible, Kinetic-macro-scopic, viscous-indiscid; adaptive Navier-Stokes solver via wavelets; well-posedness of the evolutionary Navier-stokes equations un 3D; existence theory for the imcompressible Navier-Stockes equations in exterior and aperture domains. All six articles present significant results and provide six better understanding of the problems in areas that enjoy a long-lasting attention of researchers dealing with fluid mechanics PDEs. Althiugh the papers have the character of detailed summaries, their centrak parts contain the newest results achieved by the authors who are experts in the topics they present |
Note de contenu : |
- Viscous flows in besov spaces
- The dynamical systems approch to the Navier-Stokes equations of compressible fluids
- Adaptive wavelet solvers for the usteady incompressible Navier-Stokes equations
- Asymptotic problems and compressible-Incompressible limit
- Weighted spaces with detached asymptotics in application to the Navier-Stokes equations
- On the mathematical theory of fluid dynamic limits to conservation laws |
Advances in mathematical fluid mechanics [texte imprimé] / Malek , Josef, Éditeur scientifique ; Jindrich Necas, Éditeur scientifique ; Rokyta , Miko, Éditeur scientifique / International school mathemacal theory in fluid mechanics (6; 19-26 sept.embre 1999; Paseky, Tchéquie), Auteur . - Berlin ; London ; Cham : Springer, 2000 . - XVIII-222 p. ; 24 cm. ISBN : 978-3-540-67786-4 Bibliogr. Langues : Anglais ( eng)
Mots-clés : |
Fluides, Mécanique des Mathématiques -- Actes de congrès |
Index. décimale : |
532 Mécanique des fluides. Mécanique des liquides. Hydraulique. Hydromécanique. |
Résumé : |
This book consists of six survey contributions, focusing on several open problems of theoreticl fluid mechanics both for incompressible and compressible fluids. the following topic are studied intensively within the book: global in time qualitative propries of solutions to compressible fluid models; fluide mechanics limits as compressible-incompressible, Kinetic-macro-scopic, viscous-indiscid; adaptive Navier-Stokes solver via wavelets; well-posedness of the evolutionary Navier-stokes equations un 3D; existence theory for the imcompressible Navier-Stockes equations in exterior and aperture domains. All six articles present significant results and provide six better understanding of the problems in areas that enjoy a long-lasting attention of researchers dealing with fluid mechanics PDEs. Althiugh the papers have the character of detailed summaries, their centrak parts contain the newest results achieved by the authors who are experts in the topics they present |
Note de contenu : |
- Viscous flows in besov spaces
- The dynamical systems approch to the Navier-Stokes equations of compressible fluids
- Adaptive wavelet solvers for the usteady incompressible Navier-Stokes equations
- Asymptotic problems and compressible-Incompressible limit
- Weighted spaces with detached asymptotics in application to the Navier-Stokes equations
- On the mathematical theory of fluid dynamic limits to conservation laws |
|  |