Titre : |
Geometric numerical integration : structure-preserving algirithms for ordinary differential equations |
Type de document : |
texte imprimé |
Auteurs : |
Hairer , E., Auteur ; Lubich , C., Auteur ; Wanner , G., Auteur ; Wanner , G. |
Editeur : |
Berlin ; London ; Cham : Springer |
Année de publication : |
2002 |
Collection : |
Springer series in computational mathematics num. 31 |
Importance : |
XIII-515 p. |
Présentation : |
ill. |
Format : |
25 cm |
ISBN/ISSN/EAN : |
978-3-540-43003-2 |
Note générale : |
With 119 fig. Bibliogr. Index |
Langues : |
Anglais (eng) |
Mots-clés : |
Intégration numérique
Runge-Kutta, Méthode de
Équations différentielles -- Solutions numériques
Systèmes hamiltoniens
Flots (dynamique différentiable) |
Index. décimale : |
519.6 Mathématique numérique. Analyse numérique. Programmation. (informatique). Science des ordinateurs. |
Résumé : |
Numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions are the subject of this book. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by many figures, it treats applications from physics and astronomy and contains many numerical experiments and comparisons of different approaches. |
Note de contenu : |
- Examples and Numerical Experiments
- Numerical Integrators
- Order Conditions, Trees and B-Series
- Conservation of First Integrals and Methods on Manifolds
- Symmetric Integration and Reversibility
- Symplectic Integration of Hamiltonian Systems
- Further Topics in Structure Preservation
- Structure-Preserving Implementation
- Backward Error Analysis and Structure Preservation
- Hamiltonian Perturbation Theory and Symplectic Integrators
- Reversible Perturbation Theory and Symmetric Integrators
- Dissipatively Perturbed Hamiltonian and Reversible Systems
- Highly Oscillatory Differential Equations
- Dynamics of Multistep Methods |
Geometric numerical integration : structure-preserving algirithms for ordinary differential equations [texte imprimé] / Hairer , E., Auteur ; Lubich , C., Auteur ; Wanner , G., Auteur ; Wanner , G. . - Berlin ; London ; Cham : Springer, 2002 . - XIII-515 p. : ill. ; 25 cm. - ( Springer series in computational mathematics; 31) . ISBN : 978-3-540-43003-2 With 119 fig. Bibliogr. Index Langues : Anglais ( eng)
Mots-clés : |
Intégration numérique
Runge-Kutta, Méthode de
Équations différentielles -- Solutions numériques
Systèmes hamiltoniens
Flots (dynamique différentiable) |
Index. décimale : |
519.6 Mathématique numérique. Analyse numérique. Programmation. (informatique). Science des ordinateurs. |
Résumé : |
Numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions are the subject of this book. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by many figures, it treats applications from physics and astronomy and contains many numerical experiments and comparisons of different approaches. |
Note de contenu : |
- Examples and Numerical Experiments
- Numerical Integrators
- Order Conditions, Trees and B-Series
- Conservation of First Integrals and Methods on Manifolds
- Symmetric Integration and Reversibility
- Symplectic Integration of Hamiltonian Systems
- Further Topics in Structure Preservation
- Structure-Preserving Implementation
- Backward Error Analysis and Structure Preservation
- Hamiltonian Perturbation Theory and Symplectic Integrators
- Reversible Perturbation Theory and Symmetric Integrators
- Dissipatively Perturbed Hamiltonian and Reversible Systems
- Highly Oscillatory Differential Equations
- Dynamics of Multistep Methods |
|  |