Titre : |
The Biharmonic problem in the theory of elasticity |
Type de document : |
texte imprimé |
Auteurs : |
Vasiliev , Valery V. ; Lurie , Sergey A., Auteur |
Editeur : |
New York : Gordon and Breach |
Année de publication : |
1995 |
Importance : |
VIII-265 P. |
ISBN/ISSN/EAN : |
2-88449-054-X |
Langues : |
Français (fre) |
Mots-clés : |
Elasticité |
Index. décimale : |
539.3 Elasticité. Déformation. Mécanique des solides élastiques |
Résumé : |
Beginning with an in-depth presentation of a general mathematical model, the authors proceed to outline specific applications, extending the developed method to special harmonic problems of mechanics for conjugated domains. All applications are illustrated with numerical examples.
This unique reference work offers a method of deriving exact solutions to the biharmonic equation in the context of elasticity problems. The authors propose a number of new solutions, the like of which have never before been outlined in Western literature. |
Note de contenu : |
Table des matières
Homogeneous Solutions for the Biharmonic Problem
Method of Solution for the Biharmonic Problem of Mathematical Physics
Plane Problem of the Theory of Elasticity in Cartesian Coordinates
Plane Problem of the Theory of Elasticity in Polar Coordinates
Biharmonic Problem of the Classical Plate Theory
Axisymmetric Problem of the Theory of Elasticity for a Cylinder
Thermal Radiation and Wave Particle Duality
|
ISBN 13 : |
978-2884490542 |
The Biharmonic problem in the theory of elasticity [texte imprimé] / Vasiliev , Valery V. ; Lurie , Sergey A., Auteur . - New York : Gordon and Breach, 1995 . - VIII-265 P. ISBN : 2-88449-054-X Langues : Français ( fre)
Mots-clés : |
Elasticité |
Index. décimale : |
539.3 Elasticité. Déformation. Mécanique des solides élastiques |
Résumé : |
Beginning with an in-depth presentation of a general mathematical model, the authors proceed to outline specific applications, extending the developed method to special harmonic problems of mechanics for conjugated domains. All applications are illustrated with numerical examples.
This unique reference work offers a method of deriving exact solutions to the biharmonic equation in the context of elasticity problems. The authors propose a number of new solutions, the like of which have never before been outlined in Western literature. |
Note de contenu : |
Table des matières
Homogeneous Solutions for the Biharmonic Problem
Method of Solution for the Biharmonic Problem of Mathematical Physics
Plane Problem of the Theory of Elasticity in Cartesian Coordinates
Plane Problem of the Theory of Elasticity in Polar Coordinates
Biharmonic Problem of the Classical Plate Theory
Axisymmetric Problem of the Theory of Elasticity for a Cylinder
Thermal Radiation and Wave Particle Duality
|
ISBN 13 : |
978-2884490542 |
|  |