Titre : |
Introduction to calculs and classical analysis |
Type de document : |
texte imprimé |
Auteurs : |
Hijab , Omar, Auteur |
Editeur : |
Berlin ; London ; Cham : Springer |
Année de publication : |
1997 |
Collection : |
Undegraduate texts in mathematics |
Importance : |
XII-306 p. |
Présentation : |
ill. |
Format : |
25 cm |
ISBN/ISSN/EAN : |
978-0-387-94926-0 |
Note générale : |
With 68 ill. Bibliogr. Index |
Langues : |
Anglais (eng) |
Mots-clés : |
Calcul infinitésimal
Analyse mathématique
Calculus
Mathematical analysis |
Index. décimale : |
517.1 Introduction à l'analyse mathématique |
Résumé : |
This text is intended for an honors calculus course or for an introduction to analysis. Involving rigorous analysis, computational dexterity, and a breadth of applications, it is ideal for undergraduate majors. The book contains many remarkable features: * complete avoidance of /epsilon-/delta arguments by instead using sequences * definition of the integral as the area under the graph, while area is defined for EVERY subset of the plane * complete avoidance of complex numbers * heavy emphasis on computational problems * applications from many parts of analysis, e.g. convex conjugates, Cantor set, continued fractions, Bessel functions, the zeta functions, and many more * 344 problems with solutions in the back of the book |
Note de contenu : |
- The set of real numbers
- Continuity
- Differentiation
- Integration
- Applications |
Introduction to calculs and classical analysis [texte imprimé] / Hijab , Omar, Auteur . - Berlin ; London ; Cham : Springer, 1997 . - XII-306 p. : ill. ; 25 cm. - ( Undegraduate texts in mathematics) . ISBN : 978-0-387-94926-0 With 68 ill. Bibliogr. Index Langues : Anglais ( eng)
Mots-clés : |
Calcul infinitésimal
Analyse mathématique
Calculus
Mathematical analysis |
Index. décimale : |
517.1 Introduction à l'analyse mathématique |
Résumé : |
This text is intended for an honors calculus course or for an introduction to analysis. Involving rigorous analysis, computational dexterity, and a breadth of applications, it is ideal for undergraduate majors. The book contains many remarkable features: * complete avoidance of /epsilon-/delta arguments by instead using sequences * definition of the integral as the area under the graph, while area is defined for EVERY subset of the plane * complete avoidance of complex numbers * heavy emphasis on computational problems * applications from many parts of analysis, e.g. convex conjugates, Cantor set, continued fractions, Bessel functions, the zeta functions, and many more * 344 problems with solutions in the back of the book |
Note de contenu : |
- The set of real numbers
- Continuity
- Differentiation
- Integration
- Applications |
|  |