Titre : | Surfaces de riemann équation de halphen et groupes polyédraux : groupes algèbres et géométrie.Tome 3 | Type de document : | texte imprimé | Auteurs : | Jean-Marie Arnaudiès, Auteur ; J. Bertin, Auteur | Editeur : | Paris : Ellipses | Année de publication : | 2001 | Importance : | X-469 p. | Présentation : | ill. | Format : | 26 cm | ISBN/ISSN/EAN : | 978-2-7298-0518-0 | Note générale : | Bibliogr. p. [461]. Index | Langues : | Français (fre) | Mots-clés : | Géométrie -- Manuels d'enseignement supérieur
Riemann, Surfaces de -- Manuels d'enseignement supérieur
Groupes, Théorie des -- Manuels d'enseignement supérieur | Index. décimale : | 51 Mathématiques | Résumé : | Dans ce tome 3 de Groupes, Algèbres et Géométrie, les auteurs se penchent une nouvelle fois sur les groupes polyédraux, vus ici comme groupes de Galois entre corps de fractions rationnelles. Le contexte du livre est la théorie des corps de fonctions algébriques d'une variable et des surfaces de Riemann. Les bases de ces théories sont donc développées, en insistant sur le concept de ramification. Le texte offre des démonstrations complètes et détaillées, et donne, afin d'épargner au lecteur la consultation permanente d'autres ouvrages, tous les outils annexes nécessaires : algébriques, analytiques et topologiques ; ce qui le distingue d'autres monographies plus spécialisées. Le livre se termine par une étude fouillée de l'équation de Halphen, qui réalise la synthèse de toutes les idées présentées. Bien que constituant la suite logique des deux premiers tomes, ce tome 3 en est largement indépendant. Cet ouvrage contient nombre de résultats majeurs que l'on trouve rarement prouvés en détail dans un volume unique, comme par exemple le théorème des résidus algébrique, le théorème de séparation des surfaces de Riemann complexes compactes ou la version la plus générale du théorème de Van Kampen. En outre, il propose au lecteur, dans un cadre élémentaire, une introduction au langage géométrique, axée sur les courbes algébriques planes. | Note de contenu : | Sommaire
*Fractions rationnelles, fonctions algébriques
*Ramification des corps de fonctions algébriques d'une variable
*Le genre
*Surfaces de Riemann complexes
*Surfaces de Riemann et théorie de Galois
*Surfaces de Riemann et courbes planes
*Groupes polyédraux et équation de Halphen |
Surfaces de riemann équation de halphen et groupes polyédraux : groupes algèbres et géométrie.Tome 3 [texte imprimé] / Jean-Marie Arnaudiès, Auteur ; J. Bertin, Auteur . - Paris : Ellipses, 2001 . - X-469 p. : ill. ; 26 cm. ISBN : 978-2-7298-0518-0 Bibliogr. p. [461]. Index Langues : Français ( fre) Mots-clés : | Géométrie -- Manuels d'enseignement supérieur
Riemann, Surfaces de -- Manuels d'enseignement supérieur
Groupes, Théorie des -- Manuels d'enseignement supérieur | Index. décimale : | 51 Mathématiques | Résumé : | Dans ce tome 3 de Groupes, Algèbres et Géométrie, les auteurs se penchent une nouvelle fois sur les groupes polyédraux, vus ici comme groupes de Galois entre corps de fractions rationnelles. Le contexte du livre est la théorie des corps de fonctions algébriques d'une variable et des surfaces de Riemann. Les bases de ces théories sont donc développées, en insistant sur le concept de ramification. Le texte offre des démonstrations complètes et détaillées, et donne, afin d'épargner au lecteur la consultation permanente d'autres ouvrages, tous les outils annexes nécessaires : algébriques, analytiques et topologiques ; ce qui le distingue d'autres monographies plus spécialisées. Le livre se termine par une étude fouillée de l'équation de Halphen, qui réalise la synthèse de toutes les idées présentées. Bien que constituant la suite logique des deux premiers tomes, ce tome 3 en est largement indépendant. Cet ouvrage contient nombre de résultats majeurs que l'on trouve rarement prouvés en détail dans un volume unique, comme par exemple le théorème des résidus algébrique, le théorème de séparation des surfaces de Riemann complexes compactes ou la version la plus générale du théorème de Van Kampen. En outre, il propose au lecteur, dans un cadre élémentaire, une introduction au langage géométrique, axée sur les courbes algébriques planes. | Note de contenu : | Sommaire
*Fractions rationnelles, fonctions algébriques
*Ramification des corps de fonctions algébriques d'une variable
*Le genre
*Surfaces de Riemann complexes
*Surfaces de Riemann et théorie de Galois
*Surfaces de Riemann et courbes planes
*Groupes polyédraux et équation de Halphen |
| |