Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Pomerleau, Dean A.
Documents disponibles écrits par cet auteur
Faire une suggestion Affiner la rechercheNeural network perception for mobile robot guidance / Pomerleau, Dean A.
Titre : Neural network perception for mobile robot guidance Type de document : texte imprimé Auteurs : Pomerleau, Dean A., Auteur Editeur : Boston : Kluwer academic publishers Année de publication : 1993 Collection : The kluwer international series in engineering and computer science Sous-collection : Robotics: vision, manipulation and sensors num. 239 Importance : XIV-191p. Présentation : ill. Format : 24 cm ISBN/ISSN/EAN : 978-0-7923-9373-3 Note générale : Bibliogr. p.[179]-186. Index. Langues : Anglais (eng) Mots-clés : Mobile robots
Neural networks (Computer science)
Robots -- Control systems
Commande automatique
Intelligence artificielle
Robotique
Robots mobiles
Réseaux neuronaux (informatique)Index. décimale : 62-52 Machine et processus conduits ou contrôlés automatiquement Résumé : Vision based mobile robot guidance has proven difficult for classical machine vision methods because of the diversity and real time constraints inherent in the task. This book describes a connectionist system called ALVINN (Autonomous Land Vehicle In a Neural Network) that overcomes these difficulties. ALVINN learns to guide mobile robots using the back-propagation training algorithm. Because of its ability to learn from example, ALVINN can adapt to new situations and therefore cope with the diversity of the autonomous navigation task.
But real world problems like vision based mobile robot guidance present a different set of challenges for the connectionist paradigm. Among them are: how to develop a general representation from a limited amount of real training data, how to understand the internal representations developed by artificial neural networks, how to estimate the reliability of individual networks, how to combine multiple networks trained for different situations into a single system, and how to combine connectionist perception with symbolic reasoning.
Neural Network Perception for Mobile Robot Guidance presents novel solutions to each of these problems. Using these techniques, the ALVINN system can learn to control an autonomous van in under 5 minutes by watching a person drive. Once trained, individual ALVINN networks can drive in a variety of circumstances, including single-lane paved and unpaved roads, and multi-lane lined and unlined roads, at speeds of up to 55 miles per hour. The techniques also are shown to generalize to the task of controlling the precise foot placement of a walking robot.Note de contenu : Contents:
* Network Architecture.
* Training Networks "On-The-Fly".
* Training Networks With Structured Noise.
* Driving Results and Performance.
* Analysis of Network Representations.
* Rule-Based Multi-network Arbitration.
* Output Appearance Reliability Estimation.
* Input Reconstruction Reliability Estimation.
* Other Applications. The SM[superscript 2].
* Other Vision-based Robot Guidance Methods.Neural network perception for mobile robot guidance [texte imprimé] / Pomerleau, Dean A., Auteur . - Kluwer academic publishers, 1993 . - XIV-191p. : ill. ; 24 cm. - (The kluwer international series in engineering and computer science. Robotics: vision, manipulation and sensors; 239) .
ISBN : 978-0-7923-9373-3
Bibliogr. p.[179]-186. Index.
Langues : Anglais (eng)
Mots-clés : Mobile robots
Neural networks (Computer science)
Robots -- Control systems
Commande automatique
Intelligence artificielle
Robotique
Robots mobiles
Réseaux neuronaux (informatique)Index. décimale : 62-52 Machine et processus conduits ou contrôlés automatiquement Résumé : Vision based mobile robot guidance has proven difficult for classical machine vision methods because of the diversity and real time constraints inherent in the task. This book describes a connectionist system called ALVINN (Autonomous Land Vehicle In a Neural Network) that overcomes these difficulties. ALVINN learns to guide mobile robots using the back-propagation training algorithm. Because of its ability to learn from example, ALVINN can adapt to new situations and therefore cope with the diversity of the autonomous navigation task.
But real world problems like vision based mobile robot guidance present a different set of challenges for the connectionist paradigm. Among them are: how to develop a general representation from a limited amount of real training data, how to understand the internal representations developed by artificial neural networks, how to estimate the reliability of individual networks, how to combine multiple networks trained for different situations into a single system, and how to combine connectionist perception with symbolic reasoning.
Neural Network Perception for Mobile Robot Guidance presents novel solutions to each of these problems. Using these techniques, the ALVINN system can learn to control an autonomous van in under 5 minutes by watching a person drive. Once trained, individual ALVINN networks can drive in a variety of circumstances, including single-lane paved and unpaved roads, and multi-lane lined and unlined roads, at speeds of up to 55 miles per hour. The techniques also are shown to generalize to the task of controlling the precise foot placement of a walking robot.Note de contenu : Contents:
* Network Architecture.
* Training Networks "On-The-Fly".
* Training Networks With Structured Noise.
* Driving Results and Performance.
* Analysis of Network Representations.
* Rule-Based Multi-network Arbitration.
* Output Appearance Reliability Estimation.
* Input Reconstruction Reliability Estimation.
* Other Applications. The SM[superscript 2].
* Other Vision-based Robot Guidance Methods.Exemplaires
Code-barres Cote Support Localisation Section Disponibilité Etat_Exemplaire 041556 62-52 POM Papier Bibliothèque Centrale Automatique Disponible