Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Richard W. Sharpe
Documents disponibles écrits par cet auteur
Faire une suggestion Affiner la rechercheDifferential geometry / Richard W. Sharpe
Titre : Differential geometry : cartan's generalization of klein's erlangen program Type de document : texte imprimé Auteurs : Richard W. Sharpe, Auteur Editeur : Berlin : Springer-Verlag Année de publication : 1997 Collection : Graduate texts in mathematics num. 166 Importance : XIX-421 p. Présentation : ill. Format : 25 cm ISBN/ISSN/EAN : 978-0-387-94732-7 Note générale : With 104 ill. Bibliogr. Index Langues : Anglais (eng) Mots-clés : Geometry, Differential
Géométrie différentielleIndex. décimale : 514.7 Géométrie différentielle. Méthodes algébriques et analytiques en géométrie Résumé : This text presents a systematic and well-motivated development of differential geometry leading to the global version of Cartan connections. The material is presented at a level accessible to a first-year graduate student. The first four chapters provide a complete development of the fundamentals of differential topology, foliations, Lie groups, and homogeneous spaces. Chapter 5 studies Cartan geometries which generalize homogeneous spaces in the same way that Riemannian geometry generalizes Euclidean geometry. One of the beautiful facets of Cartan geometries is that curvature appears as an exact local measurement of "broken symmetry." The last three chapters study Riemannian geometry, conformal geometry, and projective geometry. Topics included in the five appendices are a comparison of Cartan and Ehresmann connections, and the derivation of the divergence and curl operators from symmetry considerations Note de contenu :
- In the Ashes of the Ether: Differential Topology
- Looking for the Forest in the Leaves: Folations
- The Fundamental Theorem of Calculus
- Shapes Fantastic: Klein Geometries
- Shapes High Fantastical: Cartan Geometries
- Riemannian Geometry
- Mobius Geometry
- Projective GeometryDifferential geometry : cartan's generalization of klein's erlangen program [texte imprimé] / Richard W. Sharpe, Auteur . - Springer-Verlag, 1997 . - XIX-421 p. : ill. ; 25 cm. - (Graduate texts in mathematics; 166) .
ISBN : 978-0-387-94732-7
With 104 ill. Bibliogr. Index
Langues : Anglais (eng)
Mots-clés : Geometry, Differential
Géométrie différentielleIndex. décimale : 514.7 Géométrie différentielle. Méthodes algébriques et analytiques en géométrie Résumé : This text presents a systematic and well-motivated development of differential geometry leading to the global version of Cartan connections. The material is presented at a level accessible to a first-year graduate student. The first four chapters provide a complete development of the fundamentals of differential topology, foliations, Lie groups, and homogeneous spaces. Chapter 5 studies Cartan geometries which generalize homogeneous spaces in the same way that Riemannian geometry generalizes Euclidean geometry. One of the beautiful facets of Cartan geometries is that curvature appears as an exact local measurement of "broken symmetry." The last three chapters study Riemannian geometry, conformal geometry, and projective geometry. Topics included in the five appendices are a comparison of Cartan and Ehresmann connections, and the derivation of the divergence and curl operators from symmetry considerations Note de contenu :
- In the Ashes of the Ether: Differential Topology
- Looking for the Forest in the Leaves: Folations
- The Fundamental Theorem of Calculus
- Shapes Fantastic: Klein Geometries
- Shapes High Fantastical: Cartan Geometries
- Riemannian Geometry
- Mobius Geometry
- Projective GeometryExemplaires
Code-barres Cote Support Localisation Section Disponibilité Etat_Exemplaire 046778 514.7 SHA Papier Bibliothèque Centrale Mathématiques Disponible